### Probability

#### Probability Basics

#### Probability Problems

#### Poker Probability

- Probability in stud poker
- Probability of straight
- Probability of flush
- Cards of equal rank
- Probability of no pair

#### Random Variables

#### Discrete Distributions

#### Continuous Distributions

### Probability: Table of Contents

#### Probability Basics

#### Probability Problems

#### Poker Probability

- Probability in stud poker
- Probability of straight
- Probability of flush
- Cards of equal rank
- Probability of no pair

#### Random Variables

#### Discrete Distributions

#### Continuous Distributions

# What is a Probability Distribution?

A **probability distribution** is a table or an equation
that links each possible value that a
random variable can assume
with its probability of occurrence.

**Note:** Your browser does not support HTML5 video. If you view this web page on a different browser
(e.g., a recent version of Edge, Chrome, Firefox, or Opera), you can watch a video treatment of this lesson.

## Discrete Probability Distributions

The probability distribution of a discrete random variable can always be represented by a table. For example, suppose you flip a coin two times. This simple exercise can have four possible outcomes: HH, HT, TH, and TT. Now, let the variable X represent the number of heads that result from the coin flips. The variable X can take on the values 0, 1, or 2; and X is a discrete random variable.

The table below shows the probabilities associated with each possible value of X. The probability of getting 0 heads is 0.25; 1 head, 0.50; and 2 heads, 0.25. Thus, the table is an example of a probability distribution for a discrete random variable.

Number of heads, x | Probability, P(x) |
---|---|

0 | 0.25 |

1 | 0.50 |

2 | 0.25 |

**Note:** Given a probability distribution, you can find
cumulative probabilities. For example,
the probability of getting 1 or fewer heads [ P(X __<__ 1) ] is
P(X = 0) + P(X = 1), which is equal to 0.25 + 0.50 or 0.75.

## Continuous Probability Distributions

The probability distribution of a
continuous
random variable is represented by an equation,
called the **probability density function** (pdf).
All probability density functions satisfy the following
conditions:

- The random variable Y is a function of X; that is, y = f(x).
- The value of y is greater than or equal to zero for all values of x.
- The total area under the curve of the function is equal to one.

The charts below show two continuous probability distributions. The first chart shows a probability density function described by the equation y = 1 over the range of 0 to 1 and y = 0 elsewhere. The second chart shows a probability density function described by the equation y = 1 - 0.5x over the range of 0 to 2 and y = 0 elsewhere. The area under the curve is equal to 1 for both charts.

y = 1

y = 1 - 0.5x

The probability that a continuous random variable falls in the
interval between *a* and *b* is equal to the
area under the pdf curve between *a* and *b*.
For example, in the first chart above, the shaded area shows
the probability that the random variable X will
fall between 0.6 and 1.0. That probability is 0.40.
And in the second chart, the shaded area shows
the probability of falling between 1.0 and 2.0.
That probability is 0.25.

**Note:** With a continuous distribution, there are an infinite
number of values between any two data points. As a result,
the probability that a continuous random variable will assume a
particular value is always zero. For example, in both of the above
charts, the probability that variable X will equal *exactly*
0.4 is zero.

## Test Your Understanding

**Problem 1**

The number of adults living in homes on a randomly selected city block is described by the following probability distribution.

Number of adults, x |
Probability, P(x) |
---|---|

1 | 0.25 |

2 | 0.50 |

3 | 0.15 |

4 or more | ??? |

What is the probability that 4 or more adults reside at a randomly selected home?

(A) 0.10

(B) 0.15

(C) 0.25

(D) 0.50

(E) 0.90

**Solution**

The correct answer is A. The sum of all the probabilities is equal to 1. Therefore, the probability that four or more adults reside in a home is equal to 1 - (0.25 + 0.50 + 0.15) or 0.10.

5 Steps to a 5 AP Statistics, 2014-2015 Edition (5 Steps to a 5 on the Advanced Placement Examinations Series) $18.95 $4.61 76% off | |

See more Statistics books ... |

Bestsellers Handheld Calculators Updated daily | ||

1. Texas Instruments TI-84 Plus CE Lightning Graphing Calculator $150.00 $167.88 | ||

2. Texas Instruments Ti-84 plus Graphing calculator - Black $114.00 $102.99 | ||

3. Texas Instruments TI-84 Plus CE Graphing Calculator, Black $150.00 $124.79 | ||

4. Texas Instruments VOY200/PWB Graphing Calculator | ||

5. HP 12CP Financial Calculator $79.99 $49.73 |

Bestsellers Statistics and Probability Updated daily | ||

1. Barron's AP Statistics $18.99 $12.91 | ||

2. Cracking the AP Statistics Exam, 2019 Edition: Practice Tests & Proven Techniques to Help You Score a 5 (College Test Preparation) $19.99 $13.59 | ||

3. Naked Statistics: Stripping the Dread from the Data $16.95 $11.52 | ||

4. Statistics for People Who (Think They) Hate Statistics $82.00 $77.90 | ||

5. How to Lie with Statistics $13.95 $11.96 |

Texas Instruments TI-83 Plus Graphing Calculator $149.99 $89.45 40% off | |

See more Graphing Calculators ... |