Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
95760 63661 69180 68706 90630 57105 79696 89626 95473 64768 15129 33058 40984 25817 64231 13997 38424 37720 40852 72148 24934 20307 91750 48483 33843 04833 29406 86808 89988 48043 89838 60321 30020 71233 15411 23179 47720 24311 62648 87058 64309 74860 35047 22717 23764 22204 40891 86558 13126 36466 76060 72190 07817 22632 31843 86992 41950 09615 27755 53676 03640 64315 69342 36848 55320 30685 31002 94570 79053 93787 63789 54925 46842 68864 28232 17577 15943 15393 52145 80334 49181 76154 13440 90712 60257 41291 47938 22498 84065 37371 82182 77308 72003 41452 91253 11154 12285 20141 81578 86006 75255 93659 98743 46351 83696 24903 60309 20761 08147 33508 13619 48451 87213 34910 18618 30842 72876 04407 55658 08126 00814 66226 58314 60827 85703 07578 71197 36363 41540 17727 32764 00610 26950 52052 83136 14462 15496 21104 96902 35396 91000 04675 40938 44033 67847 90858 57219 95702 36302 40107 70629 97001 32822 74304 21775 07359 35365 90817 24797 65601 83711 01568 50186 41509 24762 97090 32592 12383 82868 35591 03636 64606 55128 57019 49727 20207 31709 22123 94868 88420 41158 76515 08477 42248 20713 39731 38189 20029 11615 19297 67680 51992 79421 49789 99469 11826 59318 56898 62737 93238 26436 46489 46137 11517 91155 18665 55610 30096 19424 06831 97190 12118 78070 41755 84825 96992 05113 40631 73183 01961 05076 21140 15470 48661 69296 40515 46236 14687 21243 59602 89195 10152 86825 31923 90030 79252 89706 17737 74213 26827 71616 23107 29810 69923 37663 63954 15299 14358 26648 55130 92381 56281 06374 24473 83792 08734 93961 51871 56114 53217 01160 33327 27591 16251 04660 70018 00940 70938 41407 82362 21160 63523 28910 49074 58352 64960 10561 71236 15525 47472 25941 61353 61409 86113 06133 57420 88271 85334 94042 61982 94728 30541 89695 06197 93552 64660 20567 38900 44491 89699 36882 40663 12078 93310 31933 62859 48443 00353 87390 91726 01126 49457 43617 37424 45890 94584 94980 48106 44533 31589 10162 48972 27701 49784 77474 06337 02700 08503 75170 16692 86309 38660 66757 20765 62590 69312 21307 42586 65706 79227 58775 53548 87728 73439 20303 61469 11450 84817 63539 24657 68202 00621 82947 90968 20660 14071 55121 61873 70662 00906 09094 81521 92018 20946 21656 50795 88322 44656 37660 66381 75767 04708 15340 84829 90956 72544 96622 11613 23715 59938 02435 15196 74903 45557 53023 66093 39230 26527 13261 00930 13063 94994 62965 11511 27244 39682 92204 58876 04898 72465 21614 12368 44251 79920 47711 13693 26435 99896 13200 65980 48308 23071 02292 47850 80261 19521 61013 52473 49034 90277 42519 51632 45527 43891 77407 84787 57611 97994 69027 73134 27945 05865 13797 58673 36783 07989 46513 68264 09790 08619 10662 02696 50856 77342 53736 50743 99902 75638 47544 28233 15699 08446 33520 42105 83679 00722 93045 79474 48745 99006 42749 21694 73086 97981 54832 83420 18987 92039 02370 76669 56647 51840 29633 99886 96983 25876 47393 52001 49450 67034 53239 71498 04850 84159 76890 00473 43145 18613 50504 73697 66271 45843 03996 32680 55947 01938 85344 64734 56490 35196 05908 67032 82629 82683 10737 35674 52313 71797 73886 79748 44530 46833 18725 60393 82111 20541 63252 54862 39550 50689 90410 45581 75813 41630 43392 34219 92152 70861 45959 80741 14915 40584 47752 67478 03362 54272 94601 88185 82473 18232 23841 62109 00767 68161 84625 73043 13107 20716 83233 33396 88518 50074 53387 73252 42997 89493 51562 54434 97327 57874 77302 09565 59888 11328 18526 06131 34471 19734 21848 35546 53087 68304 87883 27209 33786 84141 91566 87572 63463 87811 27457 64200 05674 69894 80060 34833 33448 92555 19132 21451 87097 16103 19997 29331 57034 50554 08856 11118 91581 32193 33103 55880 29781 25138 56637 03174 59213 47900 80172 82107 98805 24949 86549 75400 06644 63273 11055 08451 12790 53943 36727 63394 77087 98673 14669 18165 71978 61387 09366 10563 90317 44774 68993 27313 78178 91860 20728 18127 92672 12563 91067 34771 84757 35257 51135 95121 07052 83337 86996 72230 46648 76781 94970 08389 82921 58709 01944 54191 70345 46951 10683 32591 46304 10603 70141 27969 63904 71595 70781 00196 49788 31254 64878 23690 86945 21858 11838 51487 22524 83211 48508 04295 00649 64194 84489 84561 20225 49336 22447 15535 17760 10371 03430 05326 75167 82803 77174 35974 52585 67468 97421 77503 46186 57098 42229 26990 70993 87879 59285 72624 68685 16019 36216 82771 40415 19308 95906 20035 04624 23679 16802 80321 79847 54773 78232 56895 92531 14500 30715 29453 09844 82604 91273 78174 97492 43220 63745 22794 02526 36443 84100 86656 61158 34887 90746 85783 31574 45246 19848 42936 51743 34862 25635 26674 22232 83281 25715 15422 14021 58819 71389 86530 01308 20127 42961 30335 19330 42745 70051 89228 47170 70676 76908 21709 15571 92939 52722 91457 39749 45135 46940 81388 77206 36011 89570 32720 10540 99020 36504 09032 55261 68886 39823 85331 92601 83162 43112 62110 27325 08799 01772 04416 70548 93704 28334 05907 47546 43301 62770 77916 30566 22099 67805 63517 96639 80251 49233 76583 10396 05116 01224 65850 31878 97824 76640 03980 49347 74836 82349 01625 37102 94507 99533 46485 38288 08650 29003 67376 72711 39097 61513 23287 69649 79263 73071 17448 25667 20707 45248 36388 87425 04694 10499 14000 59496 98760 22467 20603 37173 98272 51298 77003 64287 52992 03959 93559 16012 18640 69540 34240 06688 33453 89578 05694 22624 19753 53360 71306 79914 10504 18241 90261 07252 00878 54955 81609 53740 24817 17926 13325 21703 56596 40585 16371 24503 37381 55675 23762 69347 26799 40571 34625 65104 79494 87589 03262 55115 46692 99299 53215 75006 02766 08837 16326 35502 96793 25217 96801 30235 29122 03645 60270 68563 52932 40833 47853 33377 00798 95306 15220 63918 36252 32720 96655 63584 30344 96172 94116 32748 63207 01513 91301 26568 50619 57660 92709 37799 95565 11909 87701 04606 64799 20248 39564 43376 90407 42668 99575 06533 96369 63477 46059 65348 50124 36612 48455 17752 39128 55951 56381 21148 72422 50626 13689 50225 07188 05335 97534 79769 00319 05657 82434 92477 84973 08359 29332 11768 72144 36715 99660 59597 77218 00813 94402 39264 71540 42872 18152 43234 58973

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 8/22/2019.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.