Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
93363 41165 25731 31867 02710 16176 16544 36893 80234 30797 56103 92947 12879 55445 39410 96274 68156 18837 86563 67828 39455 72054 50571 29832 16358 77600 50166 07341 79949 23472 27615 54805 23131 62214 31532 07629 95933 74983 24692 58740 75828 60616 16842 60145 63042 49684 22515 49499 00866 43560 43841 01659 20972 78481 78360 05255 13722 14609 51835 64249 23484 50096 76064 24496 68939 60142 31693 25309 88399 61062 76028 76020 10119 99346 75847 57544 47604 65724 65215 48939 19928 34225 28291 78971 97044 26241 07149 02675 70095 99592 34582 02920 46730 62584 91920 16966 71412 13075 91839 88034 70734 02535 86177 41861 23730 25112 98744 88268 57190 31691 83134 47720 65968 68957 05540 02889 58297 43459 52565 75217 26102 10673 64034 26478 40313 89061 90809 85340 71175 99137 77596 98927 33561 27529 70765 09386 57289 16040 51157 55442 82426 75710 91898 98967 79610 25882 41211 76539 95355 58261 30232 76006 22368 25978 05815 38049 94858 57652 88355 82741 08852 96455 54589 61115 67507 64169 45417 31720 51418 50253 98712 62191 13936 25905 07132 55804 01480 83124 00931 03045 98844 98770 55774 58167 99517 23631 25551 40758 00990 96483 00183 62296 25070 83153 88441 77721 63196 40579 25757 61989 46744 05878 07034 11640 42346 10402 44460 71358 72202 18808 50323 85533 59389 93112 44818 74826 98175 81758 88865 37729 49334 33678 41918 77129 60454 37355 44779 51871 11253 84885 27410 53318 83890 61038 41747 06915 58280 57326 19509 98752 32402 11060 55013 27127 67614 69412 12988 79106 58967 78484 61383 32088 30514 97363 29185 80366 55627 37187 89227 86690 02303 25211 66002 58831 03484 93860 68477 51139 52364 94802 47902 91112 22705 38004 80626 30952 14146 55795 75908 24133 22518 91933 08731 26960 35157 15661 77610 25131 51215 60775 87411 85304 26971 89682 57158 31654 46148 82468 52848 47439 15222 50955 45264 01563 83735 77765 92786 00134 89607 80387 49205 63033 29453 00231 96532 25469 53887 16699 02817 64549 87843 86242 04955 50836 75883 06424 16502 24911 52509 04987 60486 98939 37479 53909 27222 83230 56117 08469 57120 37798 84625 71311 48502 48929 20396 81503 90413 30741 77328 28601 20431 51746 06136 91714 07484 86412 39662 03562 59659 91728 63191 39542 57016 08765 09761 31790 09399 89237 80477 08241 39251 47068 89823 56693 89426 34948 35973 13873 55998 45901 96107 79492 46078 39846 46719 55316 60624 95157 08935 09220 02255 85229 18820 64259 08062 80040 22693 12723 07421 72711 97440 55204 04805 31069 95827 64659 87600 74213 16809 75467 58911 74073 00847 97498 95381 81974 50218 55172 29999 80196 74326 51524 59914 58540 60019 57261 79250 15891 66898 24832 36912 86775 47630 27485 19408 92927 93261 23332 58651 19851 03529 44409 64779 18384 82174 10743 83967 31255 57256 69409 81234 44654 26460 58598 48262 64786 27415 96675 36204 19442 33003 96244 13499 84555 71673 03209 48683 35766 72751 60838 18202 24986 36757 98825 39226 81957 30713 47352 27460 40815 08459 76151 79955 91655 55962 58568 82923 57091 61632 60625 44550 93818 11633 55082 52805 19176 10193 60500 58255 62712 24922 05302 81879 42743 57119 16840 47878 67917 37090 35450 41485 63778 44453 53522 91786 24326 53458 79558 79523 88581 03296 27236 69913 42144 93412 29472 70456 43763 03816 77483 13751 76889 40398 84850 65308 26247 05240 76578 56358 79390 91928 03163 41668 53270 05861 79648 82353 45791 09571 49694 53686 12380 93031 74633 77917 67546 68965 47538 82076 11440 93166 32284 80794 81423 09805 27605 84112 28623 21745 56165 30292 19501 85852 78614 43633 62414 33309 32654 17279 59175 14928 97100 21038 81614 71462 80941 34188 73148 28918 37407 03291 75333 18869 03027 25011 79438 23768 61693 53918 02996 47259 33726 35306 91375 09489 89931 63005 44338 67423 90665 62192 67602 60153 49901 97203 49408 79214 24285 04350 62074 63895 27202 49726 88568 21549 67837 12025 74059 72912 15240 90349 02491 22406 87385 37023 98136 53463 65236 15409 52164 48827 31806 82714 74199 35871 36224 97807 68886 56913 82791 54029 37452 64521 45049 37006 04267 41832 04840 07462 68412 47861 16369 09031 80233 87813 95268 01070 42910 08399 32656 16470 39019 18145 34202 44472 82089 32708 84191 38474 93173 45183 34582 48850 02404 21422 19072 80755 75558 20343 92160 76947 65621 39240 93206 25589 89347 84103 35499 93071 28822 64921 20314 81814 58027 16004 75978 13090 94399 41287 21930 34830 75396 84649 57785 54437 60056 25223 77398 96600 55565 97706 07922 86105 68812 37676 73877 55649 82959 51901 86205 78651 58997 13656 56338 27065 62313 83027 35259 54194 14252 52235 77563 02499 68677 15937 30524 36416 13534 66548 48150 00163 97412 14546 30252 00560 81109 33792 86505 14834 14192 31834 25508 23435 36559 45227 68850 67848 05003 59841 90169 33408 44775 56175 79218 57107 26144 79671 30924 60411 65962 36022 59454 07072 54226 11489 37274 85939 05638 18214 59216 18770 36173 64525 31536 93048 64634 50260 85977 19788 39221 87070 18834 16357 89091 43734 55017 14278 00919 16476 37110 92048 20465 24271 39434 32950 79130 29160 07114 07865 45523 81566 20136 83082 02025 90601 82412 53115 46346 19381 35843 98511 18092 05339 99380 68666 50326 05536 33088 89637 46130 66977 27207 96952 80168 21919 16217 93423 25249 08183 17896 31964 03890 14474 97388 23395 64875 50685 56261 69261 84821 43213 46573 19641 94742 55272 09930 55961 31605 32207 41553 98810 14900 71800 79340 40747 48197 19591 17926 04116 45710 89184 47746 23861 83863 07563 19099 55335 77846 85402 31210 07112 83184 12382 46292 98803 22295 77496 28610 43867 36053 14370 08540 57422 60355 71569 71635 89059 27675 07913 72687 80654 93637 12787 74787 49181 88567 51457 13392 94525 94065 35379 85382 32291 44560 17513 63126 51622 53876 12635 33545 98007 66795 42652 62171 81097 35619 06910 82216 07512 21729 77509 08625 38661 22154 19618 77147 73549 21128 36782 08393 56591 66656 41239 96902 10425 72073 49231 25199 93724 42611 01314 02859 84008 26956 07677 30574 85460 93817 18446 89207 61732 33483 19005 53864 93763 84387 50301 32948 62589 84671 54163 32228 57158 48744 43608 43896 07137 68849 98160 60636 40732 41624 84158 14679 67495 19661 00069 41872 86137 88076

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 12/10/2019.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.