Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
75703 54431 36330 55130 48992 85367 16105 23056 48462 02217 44780 24359 07565 60870 85936 74549 61025 13407 14579 54856 46395 03414 31202 70049 30626 86293 00852 31242 61623 74574 17186 63708 44814 08229 91539 39697 44706 49983 66984 36239 11452 05630 57393 17965 32411 69339 11504 44915 08713 93974 01978 05353 56818 86402 39466 73577 35083 27804 11671 92731 95320 18993 47405 82623 59361 50722 05660 72530 20621 98998 89665 59016 70658 45395 85949 88744 50739 22364 28405 66283 28399 83550 87351 86929 99004 99101 83595 94511 12318 75980 27494 64206 24060 03281 83019 10350 72467 22537 56817 19255 79860 23038 12273 07014 79205 62138 08572 02320 65673 10570 64764 54277 73206 22760 48823 65209 76078 32137 91713 48478 15457 71446 26448 11291 50969 18061 52154 62517 37257 64298 23135 45496 25550 12727 62932 95856 90217 96483 03387 24320 80338 24582 48705 24522 96261 52229 64518 05819 91165 76135 91945 51102 97625 54827 86656 99611 79172 53960 82934 54746 06857 16631 82739 16879 60814 58691 69768 41168 56820 89056 48520 20367 97860 55024 08355 92643 50688 12582 12562 74382 47389 21720 12416 18008 11945 66748 86244 94792 11794 01602 03485 02664 34392 20160 13754 99029 88779 51553 60906 58575 32140 80482 22095 56088 21363 92522 71838 74264 89611 44443 71080 36524 47876 59517 81252 64821 11544 47834 03337 62458 51960 51612 41931 21896 72986 15510 94306 57570 12570 81941 64471 63701 69299 11385 02237 97106 53973 27701 67279 85012 66157 88438 18196 57871 95751 80151 26577 07167 49546 38711 16060 68234 02795 94615 26398 28066 75765 43306 02518 58128 35310 40477 08587 72172 21425 22390 67072 09047 98814 51185 22803 40511 33450 85192 32036 04046 94138 74247 76516 60670 79077 80002 02538 77746 67423 21237 85010 36800 95854 44174 16517 66328 60125 17789 21380 99613 41642 54123 94724 57535 59012 53600 66535 56385 44615 75330 90725 40676 46163 32430 59195 40955 53261 12333 40896 56618 48971 22101 45893 63722 86377 58738 14426 47794 90141 04499 30975 61649 83074 47209 63319 08197 37691 25570 26600 48261 52778 99476 72387 33385 54951 45324 02737 63647 25223 76330 09258 70476 50563 87834 37171 24457 00459 27623 74372 68152 28482 91234 65497 73904 98847 42272 50981 26657 37977 57721 31123 31763 11062 98256 55148 47798 23626 03556 35269 44372 48088 12616 85751 84943 75323 09060 86970 34631 91226 91454 74479 93026 78273 68618 53070 52004 42086 79938 35835 78539 62994 40678 08228 22515 72593 12295 17132 49540 55314 97749 84915 98753 74982 61817 48498 65647 26378 76404 23414 09869 11803 90857 92872 88042 42640 27277 21820 11574 65916 00831 96007 29469 15867 65066 86042 36144 90496 82218 36465 04236 53140 18530 79801 42417 59029 64559 75625 78210 06851 80491 74629 65795 15314 66456 07677 18824 24706 57835 99872 68238 23462 45577 09621 45072 99722 21509 92689 88273 17897 48650 91272 77511 20229 56522 48051 90989 53355 61465 45258 88259 19869 11947 68739 18034 54885 58877 97017 50998 27598 50918 15351 37622 67848 54801 54802 90973 17683 00633 56294 94529 07919 52215 59677 34990 59705 02351 17789 60092 11083 93162 35520 61418 68555 61395 33870 82212 83640 08743 39019 50189 54440 97150 96381 35351 52201 69127 09676 32797 72876 93063 04982 70536 13689 33539 19806 42298 74694 46642 17143 65353 85341 00273 24537 63313 56036 19462 98146 73953 54705 56681 11806 82021 08357 87157 71089 77050 29644 29180 52367 36169 68425 89423 66878 31918 88330 33247 49784 65061 68320 80020 74235 22396 29251 23425 90433 59568 85435 76772 89693 08883 21205 43316 93505 12120 92474 11562 67598 78343 53303 75586 61001 66713 07456 80339 70107 94301 84969 91964 27735 68903 43710 93110 17192 46846 95940 03241 11335 15808 59878 23950 36635 02626 36264 09271 62240 06111 09917 60993 14033 54856 76303 48969 13702 90055 93093 56435 42794 73311 56730 50315 31785 19448 03987 76537 74138 54328 38532 80348 65367 97659 82490 51621 67098 70808 53007 95173 96136 29618 63810 26072 38521 22214 51768 89956 88595 71821 28461 08337 13064 84571 56738 48924 40059 82323 52276 20926 73198 60468 10152 95370 30653 70745 56397 50411 09207 29053 24561 41646 73318 48267 57277 97426 69185 96042 32824 39169 63806 77634 16686 26670 09042 43708 38117 28417 30681 23152 91704 16902 42498 80889 63926 88932 85319 00691 84722 10943 91085 92987 04048 89316 71912 27682 93446 65680 34151 91964 72597 37235 17459 73119 60893 02059 58853 66345 53994 29419 81776 07560 25394 55089 10161 31218 52978 01658 07491 53123 70591 23844 40860 78234 44596 78806 70041 33489 75439 21458 61544 25606 24210 24779 27680 23903 64206 25128 90622 68108 57493 92555 71471 01172 56471 26114 04314 27080 30433 74175 75292 93665 17129 79738 86655 00420 99328 50743 45832 31312 06382 55385 79488 12593 40789 42425 72592 95610 29750 86503 32474 64623 01740 58449 77889 69613 88062 20600 53082 84098 49417 47107 66848 87942 27461 69250 56595 75169 21369 45752 77408 86778 89401 58087 16110 68549 75458 30799 30323 53864 60651 76808 12534 71513 39858 67728 79156 78509 23290 29174 84588 17899 63054 61079 60284 01580 04711 83005 78806 18107 63845 04456 42896 65509 27620 20188 99533 09100 81344 30525 78995 64291 60033 86669 58927 04404 24973 61015 53396 93483 65281 42459 26959 44107 24469 56716 33724 00203 52006 11629 81412 44858 79881 67482 20420 33133 24164 32314 57883 49871 11570 82229 96736 92517 31022 06711 99778 78922 10210 78936 78735 80161 17160 51081 08319 78347 86788 74643 65295 49436 72470 45745 92539 71048 22601 75454 88105 55273 82158 85089 19284 06487 19262 26535 61668 04165 76742 27559 63212 10690 48695 62115 33297 04169 82051 45665 56793 36244 03135 55485 33120 14905 69228 75980 40312 12301 45131 68998 24077 97554 04728 69138 11862 94572 57545 04069 51918 64860 00318 39837 77354 15334 93551 51179 95209 31131 63080 16836 00507 33424 26635 39867 15326 62234 45404 92958 52855 84242 00595 88737 06459 25602 94997 75087 63743 29752 79544 55456 45610 40229 04876 34171 70329 08479 97905 86751 42593 26672 63371 55219 67585 85511 10413 68414 90036 57049 04125 87304 58293 02497 42119 75298 13377 05042 56092 93560 03049 27652

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 10/20/2019.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.