Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
42599 85646 15726 91570 34538 87878 99874 91592 02077 07456 99565 42250 25908 33544 53550 08541 67294 13611 25679 80168 13373 17487 12709 48105 47478 26427 77124 06156 44444 47177 04939 77520 90921 51030 88519 66355 30691 37897 34389 34336 34976 25361 96046 02221 97751 62744 31772 76414 56058 70170 87449 00522 35320 02625 04365 31926 19647 39022 52035 43337 47158 96261 86005 49361 30284 68294 30672 58059 01087 90186 87092 47515 81571 27177 65793 67393 78993 88745 44589 65502 06175 67670 51392 39357 26821 04096 72022 12745 25825 74590 83025 37281 04584 06210 09478 18979 01311 15563 07811 69807 36351 72871 73609 84254 82487 91029 74432 40891 60259 39673 07626 28932 58270 84239 83132 99799 78504 50025 31305 43685 06636 11257 35719 91113 07346 05148 90984 39501 44629 70962 85560 04724 27108 14076 09564 97678 78350 95042 87588 25838 32174 43652 36507 19827 52967 97999 48296 84972 80992 68537 97839 77872 02707 27148 75742 07957 46071 21201 46147 64051 00861 12616 29544 65935 63984 41926 10583 40910 09784 17341 70885 25361 85364 28809 46858 91313 30891 87077 12508 98002 24911 87757 87249 68432 54661 00387 68719 90939 11383 82492 90592 45754 10634 18649 05389 56565 37602 84547 92290 67078 17415 36052 89949 42583 10454 23267 54304 96515 32668 29597 41392 42013 00885 35811 15159 68489 03124 09100 80276 43184 93906 17148 39945 37736 14572 67188 78719 79738 38589 70064 70311 29305 41866 29298 10404 80631 98068 55152 74469 88558 98923 03685 00574 20131 99540 40822 97196 31167 88720 31412 76036 67816 84267 53294 09830 93121 53300 36356 15160 38581 57569 26601 60270 80717 23764 75206 97876 42630 38831 52589 22979 20566 70280 87465 55679 35480 11501 30916 48984 09593 52076 45447 21626 67962 73089 19053 15872 65034 67442 04279 80335 36218 85167 82283 77792 74438 03733 51900 17989 31703 23369 43702 15459 45666 87365 59063 72332 91185 27393 34218 86148 56891 33815 29331 82670 46744 50998 42552 73696 06601 97625 49082 39872 75773 12008 65236 38503 63594 22399 37505 36370 50977 42306 56617 67534 16981 90802 96603 16158 90372 37840 78853 24312 26186 74563 61188 24792 07290 08619 51915 98927 70946 84473 48890 59393 60373 28717 03585 58028 01309 20386 10146 18641 03575 86267 19459 94828 87637 21217 78210 52781 36165 33468 92947 79103 70603 14945 19145 13619 52723 36578 75267 07191 11194 68611 81828 04525 93141 25920 25454 51991 40709 38319 47949 30430 92624 45878 60353 12967 10759 19234 82009 47828 31690 04901 04623 66145 43267 95585 81324 14775 86169 25498 40734 14111 80471 90664 26020 40892 77203 94240 58969 36018 34918 16823 29037 37360 21248 11764 07424 37576 39471 25479 86126 66922 80071 42765 42007 01062 97303 57110 25853 93886 10753 66005 76439 35314 31901 91257 59593 34120 15685 24304 32254 25733 37062 96524 31537 05056 92573 74548 88796 84280 26900 80576 68686 75689 84434 37685 33224 99481 85836 40143 30855 16575 29599 48723 10509 86425 18609 11015 60671 49833 11710 06736 73434 36761 00266 18046 33572 99144 09722 24858 32595 68703 26169 25151 07813 39754 47903 80285 06400 77026 61992 85310 74455 48468 45833 64279 71069 83067 93721 90563 07378 53656 68404 32161 10635 84728 77654 22014 13269 85249 75822 53316 66946 06471 90404 99829 81632 24742 73604 61191 89658 49321 78894 33236 34780 55191 62580 03297 86242 40867 10360 70526 77840 11215 88892 91204 71982 85258 22352 49054 48752 28996 93997 50549 19973 13209 72730 45234 68268 96278 64661 71028 11124 31993 89668 24545 89953 02367 82964 56401 84155 75449 21654 91529 50182 88134 76300 74491 85599 53977 87484 39789 18146 96009 67372 07182 19803 04541 26272 01991 45847 19986 24199 00421 98923 40665 47440 99864 18099 55623 10111 14218 92932 02438 80725 94198 02529 50038 33751 72646 79612 06510 26176 34846 99577 51913 99072 13838 94559 96093 04154 10726 92494 61492 55344 39994 81181 90964 05334 99816 97344 80583 47146 67371 40698 37459 40700 19156 13006 62553 64371 76293 82145 58481 91553 74850 71168 62334 92223 61145 72366 03490 59503 12064 86332 86422 61221 80373 86021 98513 16474 65027 05813 42871 97194 06487 55579 96138 54703 07029 59738 91303 71285 76059 21324 25515 36739 00425 11046 92897 49949 39725 81351 42357 45442 46629 05488 60399 44953 12182 41569 78939 33987 36121 21631 08114 63379 22189 65699 94099 75860 98442 20849 01913 57617 62568 25273 23238 14859 52195 97334 09226 75375 40205 49637 28318 15097 55047 28087 49049 09668 26047 75950 47865 10997 53725 22922 41936 48827 05103 99183 46967 57295 34021 74466 60009 26494 26446 22117 67274 79040 70788 08159 76947 71626 53210 05350 76999 21593 77942 32253 17997 58488 12593 17290 20918 00628 58462 87811 09963 56662 45854 84156 70367 52133 54389 98712 31215 81040 58316 39983 73249 82404 96826 21645 61685 41827 69364 76615 04025 18055 55940 96111 32867 94540 62444 93712 13721 56007 90958 94425 77818 90011 35067 48744 79925 13499 00173 71714 81156 24380 48805 06993 56787 78079 70936 15917 29064 89103 79292 91557 25020 57607 29665 97786 59286 20949 66226 33342 41900 30258 91838 20887 11127 51996 63367 21070 91265 94519 11996 71595 75458 59639 88537 51275 33514 19187 33742 69100 44710 16580 73620 78300 55611 93375 39743 15404 62877 40839 14564 64306 21081 76506 01727 45322 75516 45745 21379 29262 20012 48317 30484 76481 79745 89941 68137 00951 19054 58856 25870 59319 74247 27382 42972 64970 11421 78485 26798 27090 09266 57335 98082 14727 66887 47877 61249 45857 36608 74381 99728 01442 81791 28018 96263 64497 59643 18413 78230 84148 29033 50209 87943 64700 83301 24634 77974 79692 08075 66059 31456 10968 64078 73563 07407 12731 94944 97494 11030 00615 60030 41031 89038 65737 92227 86748 49957 13768 80776 48178 09441 28991 79075 46372 60588 63366 37497 11461 69250 50591 61200 09225 94342 45163 92938 92648 33161 86444 20877 78483 91695 87721 11406 48817 79936 50270 66946 77631 32190 02418 08769 82363 52395 63604 84805 00469 84430 33444 02459 90989 07425 05791 86419 61107 56080 07800 61471 17714 65972 63989 60312 43969 43869 85301 56361 00867 63045 83169 21572 53793 83589 08574 09247 24091 97718 16113 61850 65626

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 12/7/2019.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.