Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
07827 83711 40280 61657 93028 06159 63784 43612 14766 63138 51268 30891 28734 18816 16484 63491 71194 95661 98280 06114 04285 38501 68416 24735 86339 03594 64373 88157 67191 72683 47169 94580 08493 92064 84167 23161 29025 36646 56892 10575 75009 99012 93842 52582 15420 03485 28300 30582 62302 45188 81144 63187 16075 54108 68666 82775 35852 84157 35378 37057 34749 27237 11829 15639 00199 52297 97414 01583 39265 69404 68189 47973 48948 18796 09683 79472 11506 84955 74710 18890 14763 35657 66181 38741 97421 86048 44916 37812 19374 87695 62462 42719 57019 42654 18896 34476 23571 42535 45646 00050 14372 32557 13300 08931 77208 00617 64416 14688 07616 91351 71340 81538 69201 45194 19015 35901 38947 62446 12793 42971 77529 92330 11250 08270 24625 47061 83996 04216 19232 40902 94489 21686 44973 54231 07849 46573 00414 22599 23665 61354 94375 50800 33815 71652 66242 51924 05272 57793 31279 11427 87921 51377 50943 76190 47367 36833 28194 68582 22752 77985 27808 25525 09567 69615 21692 62550 67461 14024 59192 62867 53056 22596 62409 91425 77760 42357 46510 33970 90578 07542 65041 61116 85924 16155 80241 17398 36438 31534 58349 35343 50791 08907 89925 74527 56506 46964 35155 85640 07762 64411 94166 99547 18214 01537 02342 41352 18800 46777 50631 69459 40556 88272 30860 39638 22429 90431 06047 94080 44088 95497 05716 75468 83738 50108 46206 66034 00930 56856 75985 51625 44377 50857 45962 10762 84763 01304 04800 28706 72559 38039 19229 36516 20832 03108 19359 75117 13059 27328 68988 84360 35942 31848 60921 17081 37216 54711 37278 78171 08464 02418 34809 88631 92930 26487 55203 74639 18329 25021 60407 81611 54663 69266 92930 13265 97030 55176 21163 95680 73441 79973 09687 66364 77626 43712 14587 88310 26852 75844 03764 89063 44734 86773 02250 24782 69046 44427 62516 69301 84536 75813 59788 28193 80736 93584 12359 77831 34777 47600 26898 29451 19198 01489 68770 18217 34763 34214 57340 17277 68270 66629 86291 76835 75364 13047 68935 88204 88351 57801 08526 72875 49010 56805 93569 96577 66405 64118 18140 08340 99696 83506 27189 04555 65957 45003 86862 18043 72980 06478 79805 32109 77095 80193 25483 19611 65979 84366 25488 07021 66469 19735 33856 63485 77375 71123 52375 14888 27293 33993 50898 82916 57414 66018 12661 49117 29341 63639 04587 43968 57900 63630 72607 60930 68952 69660 61964 95518 82204 03853 62535 09359 19026 83354 79133 19256 35258 21891 26829 11250 79026 56334 51259 79684 73554 98261 73938 91262 24977 10522 62572 74116 55150 08795 26370 31865 59467 88155 36361 82679 89665 74634 70699 23342 61646 01782 84981 18313 88281 12233 07558 13790 37228 84265 59848 76770 13742 83361 01646 59115 68488 38777 01440 86613 30354 45097 31721 73040 64263 88804 89298 59221 53987 99834 40607 77096 09955 28145 92026 38782 02072 45277 85187 50631 17525 70912 17289 52298 43603 24443 86409 80801 75500 01529 61817 59584 49137 75662 79284 12578 98967 24731 61400 03267 40793 82578 62882 98746 79577 15568 40891 58786 42254 24145 50340 49898 35542 69400 64208 84393 28762 24631 18853 84445 61639 51903 84327 71153 77124 03615 59683 78606 79204 49061 93291 92943 15710 25991 28151 16415 86138 17174 72203 56452 74452 51963 93642 39718 06904 32854 41229 51181 34843 87050 89603 98172 42528 43024 09597 99446 79940 32081 63545 99249 20597 14920 25598 06374 44363 33198 27038 58231 45262 86091 26586 09903 64292 31857 05719 48214 47236 14399 88978 30787 27473 14826 89284 50107 33793 28017 78250 22588 23211 64184 81493 02630 38773 75432 98945 21685 92376 07324 50168 52317 72575 75442 44666 97266 77399 66951 77195 03512 72162 67159 48079 01334 72275 11083 08520 68375 51060 60007 30912 18703 72560 03050 04153 16876 49356 83722 53957 17001 25374 51494 88167 26798 83701 38353 67067 96665 79397 60370 98696 33737 97308 44261 59158 40949 34875 78946 37937 81101 09952 92119 08208 65917 93614 51803 22150 70111 67971 92916 31259 70446 08982 68832 31658 09800 94265 27948 34414 86225 35912 15239 60846 67014 38298 98828 62839 27757 80898 21542 68159 16410 26095 77479 50763 42355 51996 13569 26109 90460 10243 56138 71476 60147 08826 62465 71268 29447 19894 97353 87332 44072 12569 34684 54270 31467 10759 83986 99748 39882 75969 41993 89813 02427 15114 69210 99201 26141 13333 91473 06655 06049 91798 26513 15233 64227 90530 35517 97621 13865 76210 99692 66447 48329 74992 21828 69594 55222 30314 52859 10509 55449 85713 43426 93521 67277 92634 20439 94148 95401 43249 88640 54413 45002 28260 57166 03155 60812 19720 91112 01342 91179 78840 88091 12383 77123 88807 79798 97442 66404 12589 58574 35748 52583 75754 28966 69911 39085 74281 84289 76230 28259 07369 08194 60008 35444 35254 01223 75867 28028 62019 32377 73056 89513 43409 15675 65766 08577 19638 11718 28440 93137 73208 54255 16090 09410 11718 01736 09606 45976 75678 13887 86069 02842 71318 53261 14065 05500 28405 11808 73995 43998 83055 62435 03389 36992 85541 35568 67219 20818 33111 20714 53212 63548 27797 93026 92159 04055 59231 64864 03232 16075 12451 62357 64293 97272 00721 26966 07209 83296 23339 42047 38162 86848 48450 84413 82964 61742 20861 00895 57369 91970 94850 09909 62383 05760 91981 28013 04581 14642 83916 21473 41413 77508 00225 82824 51525 89677 61203 32433 30064 96956 35679 45064 08994 34702 23831 01434 02408 91888 64995 64782 76840 00158 70482 82430 46579 47899 81385 12341 93980 19296 51399 74688 14776 58398 54625 28412 88392 58180 18389 72788 73257 74605 81052 73984 27116 65687 74822 16624 52345 55553 33568 80354 66258 23507 25629 41400 96425 18089 11634 99134 00982 96142 27305 27634 13943 86871 91276 52248 15517 80906 37905 51156 27411 44368 75082 81933 33154 57927 67049 33109 23400 80865 42203 00736 66246 40143 25919 89947 02544 44457 98352 41519 66211 23306 77258 83438 29542 91052 25803 07456 73525 35982 85374 70662 83152 34371 33395 22034 67731 89546 66136 54012 06198 95947 06528 79052 17431 28189 36975 31193 55563 55126 57165 92619 30293 78912 66885 45222 52196 99066 73831 47162 03043 01530 26423 34430 31106 72738 71615 47414 71473 38670 37708 82459 91364 28924 42166 68427

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 7/19/2018.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.