Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
90082 41632 52455 67319 49478 16496 93708 71027 80957 19252 18863 20294 83963 82816 35421 73865 38508 98406 75982 15195 50481 79601 06055 29005 21964 51407 56871 02852 46542 64320 83196 53685 29616 33384 46147 79409 33717 02257 20996 35452 48817 32274 29992 36320 87642 16508 00167 82168 05984 18831 46151 10353 48013 37981 77984 72006 16594 96619 33930 33588 68592 55397 38286 03454 35189 52015 84198 83418 67199 65288 41473 45311 05373 04208 89388 32547 75720 22001 74507 86686 09811 55199 93492 98993 90101 87694 00915 87004 20233 39805 42068 96087 20353 82338 10783 26003 47428 75651 32236 82470 40549 33715 70763 53729 91251 13177 62675 12099 38822 27421 74067 40545 90617 85635 83631 84240 67370 56866 90471 27125 73505 59089 46911 93473 92452 73268 16312 74454 06956 82417 55883 79692 44392 35662 24492 13832 47074 37307 15479 78101 67573 60893 14472 96870 89025 88263 82193 69218 70444 73620 62278 45492 17036 32597 14083 28872 75513 56313 70499 01934 54400 50438 20766 78207 69353 99255 18284 78745 13469 54724 13425 33678 52599 50542 11346 08786 45660 41208 54803 57052 89948 66082 31961 95231 91451 38453 09208 05409 60160 59597 88967 61567 30384 57838 92509 81142 06058 52618 67764 01592 31061 43552 22137 81956 84525 24492 80315 29417 01148 22595 67086 50868 16509 62378 15146 29467 37375 54784 97913 26209 37020 11245 87343 06478 75532 82744 36738 91620 45130 23877 88559 35499 40473 81915 07241 26058 53974 10870 37004 11890 96114 10550 84667 53790 40750 90631 27456 01326 95433 59712 45822 94396 96716 39382 81251 89793 30471 03279 19077 12768 77196 41156 96291 33590 82332 47940 34361 69111 51574 37798 97038 09328 71182 83197 73170 68944 53297 78967 84517 63931 06249 31365 18560 13096 29875 72134 86317 64636 35825 97570 05151 47709 92880 32581 06587 48991 97262 19751 69123 14239 67947 33404 76041 74857 66977 18662 98222 99454 44774 55512 01954 70409 10449 47866 81753 85433 27120 37625 18164 84132 32218 43740 60585 99569 82807 26276 35072 34826 25889 75474 77152 64568 93720 25811 89639 61602 24126 95069 25446 48446 05807 48389 95392 73883 48658 87341 01024 14533 79077 63980 92419 01407 60277 19915 51005 71473 37602 50367 97370 44221 08836 93232 24072 23221 19518 43146 53457 22688 83251 90544 20468 19044 27021 85725 80457 27480 61501 27914 41999 03521 76371 79324 24706 69585 60626 04220 42036 66547 47891 32978 09106 30301 86730 51152 75509 93325 35965 13532 83120 11239 84980 83210 48913 14373 99040 95643 72772 84324 89603 47711 70304 55522 09627 11783 30650 41791 73890 74780 99301 87914 04297 02235 85906 46190 00196 27357 97087 78003 33686 65094 94252 80382 69935 51195 76405 37559 12490 06269 87963 97540 73588 24856 51562 73660 69470 89481 25877 71151 40694 09720 88427 38700 97447 86262 43395 45014 89857 99974 54432 80382 03307 25959 02479 83240 78744 72621 68571 91726 57996 45729 41655 20253 54082 37476 51400 61061 46525 40543 26011 10789 01663 87164 75039 22030 17965 13185 97197 79897 96340 47127 13169 03587 35452 24250 23425 72939 52030 25615 91034 80000 26182 42146 49473 05588 71710 63693 35442 20850 31416 93095 46677 13830 97422 85239 24760 41029 56476 11128 62937 03965 60269 46941 38922 50741 20746 88093 72717 02604 30418 88301 09420 05505 07674 23647 27042 06670 67097 81635 69313 56151 14770 75260 03500 33400 68596 82068 03218 98821 03605 08217 56241 70342 22270 77541 97317 24971 49815 45613 65978 25359 54534 38805 89355 71367 93097 18355 89987 76624 80867 69425 18638 70090 87210 15165 12105 22623 55810 55778 76035 98533 49978 32576 92733 32154 22967 17052 53978 29401 13284 24934 18834 94331 65002 55251 96462 80710 73075 54397 53933 68575 53646 05189 49042 65792 39363 40935 88118 34624 99689 84492 08838 43289 86218 12331 88039 42526 02985 43600 74531 67156 01776 54182 46910 62643 02448 15765 96366 36660 38234 59896 34505 35648 26059 67051 26150 46382 61852 80693 47163 22528 40858 46336 67251 36214 02952 75607 57783 54582 02949 35308 24601 41361 05919 61482 65830 83421 07497 98471 54694 42341 79199 62979 47328 30969 38731 33137 15587 14984 45304 62566 04865 39461 19943 19435 16899 80432 90804 50527 17591 21448 63485 70303 69812 55141 16335 74959 91220 09790 20773 81494 37070 00878 86595 91769 08027 07661 32287 81572 82979 74724 80342 14678 76849 38547 77567 81914 23408 79070 40399 65219 83087 96248 25216 26709 75790 11622 23651 22738 38705 94875 82902 42960 09118 15397 51046 74392 32226 18850 47351 90480 93949 28726 57592 65154 78740 72912 54356 11897 52402 35251 42362 47806 69897 32108 28770 82651 08159 13928 18492 32943 23909 91800 34508 60993 36464 89023 63177 38974 35552 17662 24550 37987 14124 80117 67679 42120 26164 95680 90935 87511 69507 52102 87319 26413 93645 82152 14769 16254 32545 65184 91481 33700 62458 53691 16217 13718 84733 24879 13615 13638 33629 57220 04507 02217 09127 32019 01228 73699 34745 59976 27930 86879 40347 32746 65893 29166 69957 99507 23840 05643 14573 68515 33246 53134 69977 33674 68653 79261 19550 26093 92983 26511 42082 90651 27847 61297 44585 87560 48864 88018 20108 18925 05964 88128 30547 80310 68711 84189 14457 37295 96607 28944 19867 27046 34409 19369 62091 84872 32442 35746 06540 95787 91906 05716 76536 71079 35197 93349 86122 49863 01211 13202 97879 25653 65664 69381 05733 97917 86397 19608 42771 48643 73695 64280 14053 43903 85597 60532 54424 60410 48208 61299 11328 37089 01011 79380 52615 51629 67180 76501 99363 22055 48896 77374 83681 33284 47653 08764 31528 88693 09576 63548 70523 86676 95730 89778 62755 22210 77435 04746 62603 13415 56577 34043 99538 53121 10921 75627 85946 85426 64422 88876 49933 07258 82543 08661 93141 94944 92558 84402 73560 55763 28873 44132 13338 04518 03336 83561 31599 65091 00547 80136 02250 97011 98173 32106 36796 47010 12261 22581 92153 25595 67548 08600 03457 08600 92776 35187 41883 63756 41002 74420 97451 02252 34913 89488 86842 55295 37138 23756 86210 75674 45558 14829 88993 64322 13622 33610 88728 21881 95658 48369 86861 25261 17183 13797 25561 29204 70221 85077 45533 92848 33612 56943 68828 31286 18322 27739 06660 92132

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 4/26/2019.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.