Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
72734 07154 15461 99590 88798 90138 97977 82635 72892 63173 27920 70662 00242 31831 94823 76323 89141 72484 75817 49480 46259 96370 43441 53760 36958 38651 98459 68125 80606 72477 27669 13431 70886 48051 86716 03990 21108 56685 07906 24134 34527 19872 33019 29779 99648 03340 71117 74982 10547 56118 81361 63511 12175 74599 80825 25399 70675 91602 77301 18514 68696 90434 27119 55119 25702 43952 17956 53433 43286 78628 76650 14193 75482 63607 02009 22222 24079 24776 22630 72982 58930 83819 79704 24148 63271 22286 34834 72159 04026 70652 02847 53791 27123 22380 09601 72711 77809 72984 74807 51045 45957 84090 19832 05937 36384 72503 00516 51114 64158 24263 64988 23448 74916 33712 36469 34516 90173 67556 21095 47167 77635 53926 40721 77081 46512 96440 90741 19332 67831 13270 22893 99951 19747 01199 53077 52490 57857 24685 94165 19582 10512 29927 13815 79504 99130 83923 17282 97741 83506 38534 55231 03547 32128 19548 56550 91508 17488 40740 86163 48106 36392 42937 27839 03276 55279 58078 92011 06978 80526 98279 48580 30750 53766 69893 84737 94276 72196 12576 87768 16948 33895 63345 52868 94424 08130 45644 15958 00198 30675 83404 11492 12158 24119 40108 55271 64145 43180 82852 52258 22526 45017 71408 29387 87744 84544 72286 93379 20889 34740 97797 13552 95260 31964 70114 29632 72923 46266 10338 84570 06276 76700 52557 82353 64613 71636 82909 70813 85683 74074 03647 49444 52257 91954 22199 02211 93687 93471 65231 55366 12468 27386 17710 60258 35805 68339 86966 01146 92169 87160 91756 28012 12867 46186 76324 14372 58596 19568 49465 40090 71015 38586 48587 99193 49299 61962 28775 32676 51706 71173 76852 86323 22138 90760 50440 93513 41706 33644 42026 83036 05287 71439 68023 11907 23095 29760 82830 23172 47233 08540 17901 28728 23266 27341 45798 17130 66775 95667 69263 86408 64925 08274 35275 01874 03024 65486 74113 78940 16088 18505 63419 90928 65403 39726 17263 01881 40086 18045 00201 24380 83649 79177 66341 02351 45561 30965 23405 18882 57811 33693 21787 29031 36469 95400 68625 17645 08250 92190 66853 82165 62076 13547 79270 40445 25640 32647 17602 63560 66964 01667 56561 33620 20967 72104 72912 26585 41025 40081 09531 20071 75531 16665 64472 26171 69463 23175 05026 49260 90942 11496 06785 68813 82796 09395 17704 47213 39124 90826 47165 62567 06855 71251 80036 66518 12314 27946 15738 67053 12782 45316 32304 36324 73061 85208 75444 43453 67032 82224 72605 12346 04225 64030 72035 04509 81373 96673 06846 26857 58981 54890 84076 64529 62884 17422 98749 38697 10815 87328 72943 89383 63959 37294 19847 83266 03525 79948 32826 46501 32302 63173 99485 22526 01224 90417 40727 54878 60931 66007 74821 95003 38334 65462 06461 35070 38176 30805 40827 65784 69593 90875 22653 59197 97680 06640 00285 76521 20049 41509 14745 00940 68397 56646 13792 95426 35063 31281 90987 85544 24595 08021 49754 67274 30310 63168 92444 39815 35855 02025 34394 63403 41775 79212 42993 42122 17069 43979 01744 31714 75758 10516 99324 72397 78442 53269 43650 46670 58869 27247 00939 62134 75491 13341 59770 59296 88033 88633 20151 44389 59047 21707 07575 47179 80485 92964 12088 03782 25253 39936 52349 64471 23776 27595 64690 26495 65562 43666 17186 91884 25765 18941 48708 50271 16744 72592 32994 86694 64627 82481 67707 14417 10877 80475 88496 32738 38849 72756 08063 09803 25355 85137 80224 90417 17228 33370 88967 28859 32883 18462 62523 46693 88877 46988 12420 15581 51477 76399 97552 65093 13219 85339 13236 15524 94470 68956 05281 35704 69991 59214 09043 25809 20501 70206 13494 25176 09240 68466 50280 45115 83528 68283 07786 26722 01330 52012 70199 23689 82818 15386 81567 10118 86933 37830 34864 13336 12950 77773 86055 71702 27036 92961 93153 17425 13817 85768 80285 84373 52937 73509 26754 40888 20624 83754 81102 47596 16249 74639 00170 40220 13889 80179 13165 37394 38894 80580 10716 73476 69442 97553 58943 56357 63109 14623 38517 50276 08426 22448 08721 83634 01444 89122 96515 81802 47295 55498 10594 24939 86758 55493 80459 30798 47817 61402 20471 62546 22227 54214 18916 61571 67073 18919 52071 05294 31336 64826 23262 89988 07454 70871 26928 38584 07885 55932 37686 33483 66666 74143 24389 74377 65984 35200 89191 61050 87727 49681 31610 01199 90057 99356 37590 43244 08966 32497 93563 34139 84841 84193 25511 02186 14026 21662 63031 64846 25385 14564 28394 61556 81863 30311 50610 11534 07050 54384 04489 96599 36743 35641 74707 68978 95509 56633 44863 84122 98247 28912 11544 58516 76750 13351 23390 52493 31267 65447 45154 78048 07070 05641 46762 31645 96009 14629 17382 52037 63082 53671 04480 03071 97990 09907 77887 81508 91708 66668 18859 49829 38041 98789 34139 94050 60186 92923 95025 06536 62302 92849 01422 93813 06065 69790 70917 09376 12231 17721 52832 11509 87205 73685 67289 46091 74594 63103 69275 54414 31780 70087 37704 05990 31472 32753 89474 56366 88277 63536 18539 29940 10256 94495 59961 27766 75494 47635 78983 60373 33653 30213 85083 05576 32543 55052 71040 91284 69680 85855 76996 03321 68848 07514 79522 18230 81666 21429 05673 61090 14145 65813 72057 88328 78254 61009 48896 95533 68483 79802 49085 50262 63400 42729 42261 49862 52223 38397 93858 04275 86371 68787 29176 43854 56039 19576 22439 52174 91748 55442 10861 23846 90917 40381 33706 47327 69421 83016 96351 12738 38156 06915 59349 44668 04598 45895 52490 59993 99368 64344 13868 50689 27795 02525 53938 91638 46476 46896 44580 73447 64842 25417 33164 60259 71717 27863 81610 72562 86882 51142 30451 95007 37639 69599 87898 09215 60370 30335 43897 51594 27104 73518 09196 96150 97074 77694 79408 62297 93286 30100 24069 47674 04074 21978 00705 85954 09670 68886 93893 29657 33762 56010 79322 57964 20056 08479 12858 09529 33843 86675 44605 40290 88556 06545 57967 06284 97335 84919 33711 71458 49592 09813 39032 40481 12569 35752 41611 16556 57902 04074 48682 84237 13186 88247 71089 17234 38534 64181 12355 11234 28141 05538 82740 41705 36849 04050 38304 46717 31703 14824 44972 34745 68521 26660 67594 17491 93451 57362 84007 67691 69537 74052 24100 01927 28278 38477 33876 88444 46195

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 1/25/2020.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.