Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
41465 15725 64203 73744 73949 05603 57584 29565 23601 30304 87508 52708 40427 46061 66530 61758 99922 32641 36601 87117 42130 76158 20626 16316 35710 76886 99032 64326 66997 82073 11326 68873 54063 43752 82662 10750 85781 01552 75398 59128 85887 90515 65665 41869 02045 73902 44922 40839 19905 01012 46527 12222 02167 89991 97291 31829 52648 35644 94047 65413 05337 42250 05209 63982 38463 81374 97337 84109 13555 74675 86695 33247 39507 01726 15819 40039 61637 32822 55077 49632 75752 86790 29231 43992 67210 13809 69000 87210 74981 03215 87622 95822 80712 16319 82417 34116 22789 44215 61352 34446 35397 90596 94597 42547 12585 79564 91096 87842 97328 88445 00120 78762 95589 05601 37839 23051 15382 13238 38878 73084 30834 95225 32881 96177 71249 69904 46076 69899 35167 47901 27833 02385 29431 14939 02232 77652 33245 39652 44619 25905 87242 06398 83175 18854 07540 73068 25475 90026 24809 53902 10050 80077 48333 27299 82950 07103 55072 68631 99309 61956 03722 08056 49905 28552 73782 13330 12722 29188 29614 97617 29515 94851 09504 52305 07368 60533 39730 04818 45264 85541 73616 01426 85640 98813 55603 15061 90953 69226 10306 78124 45243 00913 56579 40307 80693 53571 46576 51394 29194 87780 29815 69082 98907 35306 42241 91791 75824 94423 20284 16475 50332 50221 39928 21436 68775 19917 80768 74136 10016 23170 15076 64010 87002 77394 21862 60277 73322 18068 25937 94756 54773 44052 61975 69674 05922 87895 63576 90482 91667 11151 77328 23665 93803 24691 01869 79556 62578 34014 51953 20150 93264 09560 47507 91911 27711 82024 27697 83592 80916 62667 89991 09041 92583 88630 54218 15016 03683 93243 51635 14001 58024 01341 38986 42011 28802 49576 37566 41412 70176 31729 97284 68727 93821 69021 85724 27454 70495 05429 02209 25876 56602 27994 16861 59873 45749 12138 34668 20735 45317 91974 84542 27974 78017 55617 33383 87140 08455 65501 25143 72628 94693 03687 44886 35493 64813 42179 07853 36264 18480 38233 73523 02756 53503 54674 84675 12879 17397 05203 31452 02454 83948 24714 40423 98027 54774 64605 88644 74676 85886 13091 42724 38829 39253 40514 22883 36072 59364 69658 92017 83966 74790 71062 69763 29855 24745 83331 71555 33682 10651 58448 72694 75800 72701 32088 97402 89784 91418 18931 32895 20244 14220 32971 68435 05640 06982 32833 59400 86090 30600 92083 16343 36184 42549 94540 19055 22799 23452 54590 55629 87908 28637 62498 86518 56396 64701 54721 33606 68869 91075 09218 94260 39470 46582 65766 80401 38687 01006 71271 82563 01171 31645 50080 58955 58543 24885 99293 49524 97212 02751 09077 15019 41182 74479 07980 01051 59868 13073 33238 27157 00909 56869 26092 00864 47978 36098 52101 56747 03595 24448 46452 20497 96941 15625 84273 97978 16670 24920 75945 89295 68720 15765 87417 27852 59129 51303 85517 44417 01842 70942 08263 56183 51528 91927 60178 80832 61393 35893 32602 75598 65987 80434 49001 01326 89024 35665 35287 11537 76188 45780 15121 66492 52948 15621 30234 72252 07373 62233 85734 44740 97941 91434 20422 98807 86351 99372 02101 62290 95340 99090 47892 15079 91490 72089 69544 53175 93046 44889 43747 77758 02722 90591 07447 09242 65521 55442 78154 26345 51541 10394 99258 30147 63791 27672 10340 33155 71003 82329 42486 73362 65444 78816 38597 53315 45729 02538 98704 04170 24631 96423 50279 74764 61898 62477 43547 45668 22063 88354 71801 68255 57256 98912 16712 28762 15017 32782 18642 37351 71110 43925 71958 42173 87331 28195 45343 68430 94327 74906 27108 82436 99404 43391 95507 80682 19341 64563 14047 03895 38200 67481 51801 76107 90144 30912 28721 68709 67245 59890 85952 89521 52295 87283 81141 96849 76625 00353 08753 38551 02911 92318 45380 16097 32991 38919 20056 73635 40675 99974 09571 12050 29557 45950 58778 28027 15831 09517 25911 78115 36098 62119 52897 67790 80184 15528 60662 65514 48951 48413 69453 41801 37106 57899 44145 33279 41017 36131 64552 31750 91526 71836 20744 98256 11759 76884 33358 02139 99939 37855 98907 85104 37202 92596 60100 50282 20403 31787 01145 76293 19934 25502 68069 56306 62535 74774 14028 62106 39106 88153 69619 33151 37518 83272 38192 90639 00430 13409 16165 76568 08096 19049 38334 17800 86182 04444 48187 15123 38576 39183 93214 57311 05200 84745 45224 60191 44825 46068 45654 30703 42883 48110 75882 55963 44277 37409 52539 17324 11196 08650 47825 29440 05926 56224 34816 04330 98663 50790 57782 40437 00327 40842 27495 36693 20372 79266 41545 31581 49601 74906 29649 67197 67974 69126 23966 78311 77428 37371 54411 06435 59682 15732 68962 38880 59053 52505 78979 72818 90270 84758 29512 04350 71283 39888 94614 42565 81077 62190 97655 48601 42487 64413 56636 99710 30004 04327 54497 78321 02595 86283 34432 86099 61512 87780 20202 83011 33104 11018 61448 51389 76628 59473 04000 84987 17068 39447 85194 03051 02940 86642 54181 89376 89108 17713 17242 56369 44597 06837 08099 34116 85404 87271 83227 84439 32313 77918 42170 39960 93702 34888 72847 68167 73362 28060 21872 60473 03307 42644 89861 46276 01584 05748 51747 32030 55089 37933 02091 65299 27378 29782 25397 23823 91480 43459 91422 29580 87708 39272 75490 87852 06473 27239 03802 51279 96097 43644 23753 08932 95625 52604 99240 00366 92636 72632 30977 54690 06056 28196 01808 54624 93973 26286 47017 25565 86447 57971 49642 49649 43322 24967 60787 04810 37042 91196 44938 28849 60458 59350 50267 08489 59648 72451 03956 93445 91720 40419 32498 35479 07633 91629 07018 52470 60006 49475 13583 17469 35930 33934 48510 72769 14782 88128 38688 68962 51034 29885 86879 29002 82070 28303 42041 37271 60999 05311 94634 53638 14461 62235 96934 52523 25446 31355 08347 86961 41103 52474 65720 77659 05556 74473 78654 27066 17711 81880 49815 58430 14073 46430 20251 79863 76558 03628 39698 73401 65304 54309 61898 09070 76484 91204 64910 83948 25119 50501 96419 86223 52889 88407 44053 84260 60948 82711 30696 40665 67735 59348 34795 51341 91786 43957 35678 09556 59547 38450 83864 95004 38189 22569 96375 87867 93415 80451 77050 07877 72277 52190 61858 78380 10987 10399 89208 15398 67731 61775 95263 41691 80478 73656 34253 25820 49796 25590 23787

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 6/16/2019.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.