Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
03123 05637 51067 99610 68231 13362 43735 99070 62454 77886 33588 04245 47736 44624 90625 86380 66587 17293 09945 41431 87398 21974 19559 66618 74750 96173 13197 61998 84728 02885 08126 57020 85234 69654 27961 62090 01298 52638 10477 45135 85392 25673 40420 33162 12742 94331 07323 38823 01641 34984 88317 11980 58759 58870 55941 16260 49458 01151 10959 30625 93106 34977 40169 75931 83386 10551 99216 66490 33608 19185 20406 86634 47027 82372 45519 92279 12148 65840 83617 37482 23047 18618 93861 26011 24675 37099 93325 87899 83175 54102 89801 81014 81196 52934 39619 17619 38202 06452 30456 15933 55786 41128 89150 76693 87982 26107 14509 84722 36579 87276 35130 35482 71430 46319 92204 86648 75771 84786 47334 34659 16526 33152 15347 16291 39623 84880 22101 35211 90309 35484 87307 13545 58457 46590 32332 68437 48884 35003 13016 13614 76658 86763 77488 85948 87416 96212 48969 97016 02673 30056 33595 09667 90135 16426 53221 39581 59012 58940 03241 81832 80331 75770 35393 62451 32247 63699 65577 14990 70357 87185 06665 82082 23012 92427 26315 42004 11630 46423 29782 60241 96006 01034 67731 66047 44628 82048 69050 54008 29988 03240 98663 10606 48892 05437 40339 65776 67779 20578 04511 69478 93026 60779 61080 93250 66266 32393 97237 56776 84696 75076 00268 79448 46395 25845 65368 56924 20630 08144 28458 62698 43175 45904 23992 74658 36619 02608 67771 26645 55680 45352 64758 85026 57517 33908 41887 50244 97044 34786 05879 83389 47240 60297 26052 57760 44464 32614 42132 35423 58766 72838 97070 68776 89200 15057 94853 27113 84136 45409 83313 48183 86574 66147 61944 14757 04454 84699 14711 56187 05971 27731 67866 74968 39886 80210 72758 98305 80839 49466 13646 54669 99660 54256 40512 75367 58686 38824 26872 21096 32068 11965 52590 33515 51086 11087 11693 11799 74462 91275 45176 14206 83673 39352 98823 84638 03260 12940 06013 04206 46144 04526 95536 67787 83939 30523 24407 85595 42260 45330 35672 09733 21040 80401 41228 85766 39841 08298 29630 29275 08167 31763 98908 27425 20774 97775 14374 65524 77986 36613 91440 78588 31005 25919 03428 27903 52226 79763 14381 02586 30545 62701 36880 46149 91677 28841 14851 08061 43465 85905 31382 20311 46193 84287 41531 98969 07900 31125 30145 70750 04690 29353 94665 24576 26047 41770 52945 88140 45147 80102 76060 29464 14167 19061 46120 83467 84604 35412 39085 03525 52581 72031 32571 38031 29165 26972 38671 31963 35675 67526 61760 53442 23996 69285 81313 45296 21895 80204 59713 01624 03326 09665 75067 69355 83751 42536 79018 74814 40446 78238 79553 75282 57816 94804 48824 35561 97708 37944 55953 29532 94724 35105 24846 66725 76530 34535 17009 43873 09173 69346 39357 21481 67390 46576 77029 25384 29922 61249 51197 73315 99828 35443 01883 26459 49794 82347 95766 66025 92448 95326 59001 94802 75673 61985 35026 63724 02917 03227 67378 23431 78507 37321 07503 00834 77962 68961 47570 00676 43305 03327 78284 32093 03375 85153 71697 60180 19140 62785 89021 82549 54009 77245 13440 30897 69146 76292 07926 97563 43781 53487 98044 87095 20521 12254 79774 92810 75668 54944 52315 98355 14525 96894 75903 04275 91712 05493 54622 79569 56479 64244 44214 38258 23016 61824 84897 40942 65769 06150 59170 21369 39747 63439 74634 37991 25841 22270 71796 50533 01133 82651 56889 21547 34207 70075 59679 42985 05464 74588 16282 87753 52436 14849 76971 86276 40095 27190 38995 28062 56166 79686 04384 88265 31441 11208 62771 79244 85092 95494 99194 27127 94981 30207 26917 73377 92975 50996 45238 01349 85256 70563 22303 87855 97637 42724 02917 79728 45870 51467 41359 95383 30962 25023 59193 51377 59488 74920 28081 13977 88899 60052 77593 75719 97839 75736 28024 56970 81456 67781 48204 32491 71714 71543 38309 83001 82706 75994 37676 71740 80966 12780 57615 46028 80783 70286 39222 63830 64512 32699 36189 45318 27886 44067 22618 49433 50330 97364 25836 75450 90273 48555 84202 89536 05461 55653 29925 76317 98268 42785 96873 15437 86009 89254 53388 83124 96254 43602 60096 78749 87139 62670 52720 76389 92679 75665 49894 01394 93080 73216 85976 31942 10053 21443 68857 25609 27123 01017 62776 70926 34948 71221 96134 63944 01622 59015 94302 09795 67998 73094 37439 49258 67993 42959 43298 10317 73902 82971 75046 84727 66714 81416 74071 29573 31419 14571 17794 93836 77326 85762 02488 69954 83371 89428 51084 70385 68432 00186 45983 29166 86643 86889 86877 28484 47700 51691 73550 50227 62181 94110 13699 52557 11856 00090 55744 71466 44997 56063 46639 47341 96693 88011 14686 76526 34162 25531 77346 87885 27064 90894 74056 44363 42811 13110 24034 69550 66884 66989 09099 99243 48141 37207 81478 58009 69133 07363 96622 60747 41412 74044 71016 39250 25851 85890 64993 93767 77947 07654 90548 69570 18141 09262 44145 58509 27129 79882 64537 25582 66171 66980 15571 60490 22407 40387 94008 54208 79168 81359 62329 00541 11289 96639 06550 22686 05423 57525 19036 24802 05349 63922 06312 68565 82290 33417 21876 74731 30221 15332 24009 49705 86185 29789 58591 37094 75603 31775 66914 94280 82587 00204 18490 93972 45253 51974 68866 50777 76036 81039 42440 72756 06995 22461 40266 37994 60135 41483 72873 96153 42713 47583 18076 95043 67552 33540 03784 32180 98355 39496 15821 31348 20014 42022 30730 44166 33929 68173 73590 76645 78313 34557 00828 40754 73509 11396 08033 30983 92302 11585 62762 25900 55229 04761 62362 14723 50897 56358 16775 48871 81287 91676 56354 18539 32076 84939 64674 54248 67942 73361 36346 53417 52881 96206 59827 31921 95516 58851 25238 00656 19415 21849 57168 67098 58395 14990 72493 61868 76844 76368 63189 90295 15025 16438 04138 08976 59396 07080 85947 27342 37917 95664 72759 34217 40363 44110 85062 49382 63642 92951 07506 00139 82099 50398 21715 22870 42835 06397 64094 89604 86018 71696 08650 59574 90194 41908 74797 55786 42600 86569 60174 66574 34478 63205 98454 72170 81386 56393 42157 96262 68510 41822 70464 82556 20979 75358 22029 96343 99175 07105 52790 51056 19045 20467 18784 59835 97419 96211 83958 12092 22313 01532 52981 75069 48252 04111 29056 20402 16574 11182 96737 75686 00747 33589 29734 01034

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 12/16/2018.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.