Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
77814 54389 61328 74271 02916 08309 36899 60571 29977 94240 02762 17009 23578 49689 52650 43639 39807 37651 03829 69911 46562 85669 79914 06231 68876 49904 18680 20525 59220 04189 04873 39802 92821 54097 28026 76714 87969 76000 65270 81120 51337 81136 89145 16651 48286 04667 00413 62266 98185 19743 85872 38821 94714 76566 01169 60630 51186 66451 78610 12025 70855 10888 59972 48920 42226 75606 54320 25373 59375 09634 20815 45151 67253 09365 76528 38289 32003 07618 29254 62655 36275 87700 35322 30510 99531 22468 82409 60074 23364 38393 97353 52084 61810 04623 78962 91362 16657 47041 55833 73373 57759 87335 69157 55788 68349 07052 80537 35050 15354 36668 04800 47932 44701 69646 67805 98102 01637 01499 89260 07686 76036 93856 90535 93828 72712 63519 27469 70255 06736 96529 48191 73838 23745 87228 75922 16157 45251 02322 16798 60058 38963 69941 92675 21222 14090 93706 98944 94722 41659 91786 87346 06592 99825 60964 73780 90381 44185 65701 71118 88723 03091 52193 47018 79895 97958 87439 06735 29382 88584 23300 00934 66438 43456 85563 58503 85649 35066 88005 44366 73496 60221 71452 42292 59917 85357 67843 62714 94869 16855 89294 75534 49891 96344 42159 67941 44667 21024 66092 27221 98588 88973 98111 48572 07315 69458 61659 67911 44339 98253 80669 19695 87548 97947 18623 19724 70786 23258 42618 72961 60416 31345 12424 06340 56884 77122 94552 26583 21280 33568 01312 03005 26901 37042 54880 75335 35814 57594 76354 86524 00417 94278 99822 40556 90003 95464 11424 85266 42324 04152 13413 20147 40148 28282 13214 29164 12828 36049 37496 38569 62859 76214 71225 99711 17445 23417 21732 96849 05060 48488 07772 79965 57007 13764 73590 22575 33987 93396 27980 04544 77656 18664 08353 19896 87190 48291 69791 09629 20846 63751 99118 19526 22529 89588 53956 82966 73346 38722 26792 28740 68178 82767 34038 13860 17235 47338 30096 81375 72624 32368 46416 43181 79907 57419 55564 87834 54666 31995 60279 13361 84065 50852 07541 85077 53414 14314 27628 18393 97728 73584 98185 86631 78293 01054 33279 53834 84226 85623 97467 32583 59039 53005 44857 66804 52202 11043 83170 39585 95701 20021 62803 05984 05609 87978 90890 50848 08640 91018 70368 71618 93717 18625 64036 86148 88531 43975 83618 65513 61105 19245 03827 91823 46358 95932 01428 41038 97665 70159 19297 90774 63422 52993 55488 53124 88604 65753 77292 32463 41333 60324 60301 08266 64437 64473 52470 42916 52015 52154 63180 14521 50996 38829 77301 74721 87705 01774 94253 31507 19423 25394 92069 57027 10951 71537 16459 20406 36173 74802 94870 45549 04616 62858 75551 93962 13014 01751 91612 72561 21871 66218 50091 66482 57025 35000 46015 96900 36205 11156 01459 03836 20600 67372 29612 53969 91416 16276 23842 73454 51443 05751 71750 05729 51614 39245 94243 94331 42572 21085 09587 90706 51225 26790 22476 87023 82317 98383 38093 73987 44984 64703 01169 23650 04320 86718 60051 97224 57940 27837 55760 77894 37538 49224 36057 28629 35454 30109 94502 74997 56236 13099 34520 12977 93201 74496 58460 41768 29996 19603 81660 21606 67166 03040 71509 56575 73710 74057 11510 02417 63648 46845 90340 99350 97583 95847 15916 29873 09259 76075 54454 01587 57132 68420 94536 54999 00923 49961 36167 96342 03188 89285 04841 55383 55876 66792 90604 68235 31893 20015 12114 85174 61666 13923 05706 03448 34703 36244 39451 25088 26156 17769 52224 39724 48384 77670 17760 32397 27518 93810 33722 16370 05018 98053 35762 90941 64239 96585 36579 24256 81996 15215 89989 61120 05119 69698 79983 55812 52023 61041 34788 29897 39268 95816 65935 55034 33118 31477 32317 60796 26110 46667 29252 67477 38610 36534 02547 43907 45381 33042 87559 90262 27142 50284 73260 45879 47131 54794 91296 22068 52669 60861 30052 59925 01721 50840 73715 13142 14458 20464 66332 55821 49824 49158 00880 15289 07090 95351 33321 29905 52426 16789 21668 31878 70457 15846 90051 55076 40828 09837 17770 67841 39765 26332 53368 30799 66639 23467 53686 79673 95530 35257 47930 33097 51785 41908 26731 25429 13583 65131 56209 64560 38500 88451 17033 14730 15067 02526 68487 04337 39334 75450 37530 58756 16436 48077 32860 58142 87149 54321 83975 20251 79458 66480 05236 08249 85118 65542 84932 63524 61214 36497 99337 63497 56727 88654 51777 04441 64095 00949 36694 09287 95775 92261 28702 60436 85807 16721 96654 57580 16374 84028 42706 00503 69368 04760 66376 96902 02948 60684 53606 95197 53107 00075 90829 42342 60232 58021 04027 66639 20667 01740 22797 85549 63276 00892 69409 38509 51003 22889 72875 44737 07440 53212 08005 86052 68384 40719 59473 14681 58400 67961 10878 86075 92388 46490 58810 16719 02140 37179 51906 66946 87908 95525 54919 48751 94961 41969 37778 58598 15150 57207 89648 35240 13472 02499 57996 42524 79631 64985 12653 77211 04599 27996 34874 01782 82181 66368 31405 02253 35577 66751 73540 70989 68943 72927 61188 14516 43955 56118 11933 86329 81372 10300 75097 44712 87595 72513 70804 35544 06235 68181 54041 00117 94670 81415 03719 07943 25612 50331 36740 14569 13667 87364 47054 44393 66897 24573 69727 98469 63385 83964 69999 87326 52794 72791 57348 88779 82934 03880 24555 30737 51320 40933 11762 99024 81739 68843 95538 70183 25806 89007 02939 69293 89536 39641 50573 52781 84895 41087 08662 16236 06373 66130 90101 27215 32541 35308 64526 83065 52613 37225 97373 93728 18012 73865 13941 89557 18929 30904 88455 54127 85888 73020 58127 82049 16307 64209 62222 61781 26062 13095 06117 83441 26047 43243 50364 71621 23738 88473 24756 43196 49759 13172 67384 90142 09435 57603 88703 87341 59367 08224 60595 25400 08983 92995 30429 68462 47107 01692 60125 37015 93523 31220 90217 15710 75530 55927 28914 86168 29511 22913 66162 84797 27495 72346 12712 85603 28715 82772 64173 08001 56176 41428 90085 49627 98215 39556 47971 44157 35061 92714 22409 44110 90403 86088 89088 28667 07947 44807 03874 36482 52984 29253 16871 23493 38947 55373 11482 45738 78976 39997 68477 67161 62483 71141 55048 92434 56709 03330 38877 24759 33292 77902 27197 48690 19826 68325 30855 37937 76424 50509 53371 88187 97282 98117 05006 74909 37239 02878 41820 36170 63344

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 9/25/2018.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.