Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
37061 84920 13676 79160 21202 98340 00880 60150 75423 69101 13330 73606 07639 79702 84772 74537 84069 37744 73660 43835 93291 83734 39717 58579 35312 23906 45498 87356 35627 88024 82951 10567 84281 12205 24984 65742 99932 46722 02023 17854 18914 88824 03575 54628 09300 40542 04793 06856 09963 91506 18038 93710 94640 26757 69437 93053 60993 59559 00452 36750 44673 89208 94440 30984 58381 83850 28211 01568 55932 88293 48600 64254 21316 56813 74020 20049 82762 10976 21030 75528 51800 22441 55896 88142 87322 20782 71154 36535 84647 26291 87170 15855 89583 07798 78706 58066 37486 65481 26483 77261 17327 38677 93738 39975 60754 38694 27791 60495 56151 06629 86608 21177 87704 96174 90362 17754 99462 81432 97993 29651 84400 89727 08775 15298 98482 59421 88877 32439 99720 22723 22923 83448 12243 13499 90559 85642 15353 00092 68012 66591 57591 43128 54652 84429 95800 78330 24558 73172 59185 24333 03078 13026 38377 15493 68393 25702 99495 59702 78075 94726 23210 21199 20657 10753 68804 28385 92191 41881 63238 06632 97808 28960 15209 36096 78287 05908 54214 34534 61611 45020 94616 65110 39537 27285 24702 69212 69148 37693 20748 24264 99427 85553 86079 26536 22811 49801 15136 98959 51757 49316 82535 23937 20304 38229 57128 01159 10637 26240 41070 30410 04646 23925 33880 19388 60492 13053 21501 16511 14166 41897 90365 68734 06057 45546 66454 04358 32508 91218 79364 40847 22382 48572 51367 17635 38625 85023 11474 53942 04828 86049 34494 31584 56787 00509 05103 02792 19069 10954 06899 23013 06572 28937 36471 08736 51091 15328 42458 20291 52874 25627 89612 69674 57192 80275 47861 53349 55897 59966 06371 10069 13985 25961 12610 03682 21159 65400 36408 30947 68393 61614 59020 54345 49491 89439 87191 59895 87652 35526 92217 39959 87034 43655 74005 01063 09312 85049 50141 96705 75244 53683 69946 85166 91233 86600 53544 12327 00888 09221 55921 19477 61589 05658 55990 76131 46047 14028 70651 37836 68867 46763 93856 28988 38113 35926 60669 50642 31866 03519 36332 13327 99791 56800 30322 94858 89696 08592 35419 23145 99099 22598 91767 84009 51783 83711 75933 53996 99366 93329 14975 58185 47861 89666 25500 53001 09236 93065 77729 34034 77980 76311 84559 68841 32663 59941 15625 54769 62501 32562 36363 01760 18915 96155 72071 40167 92098 36397 96975 53565 12573 17966 48288 36565 77758 04858 65274 77625 03528 05697 53309 66864 00778 44048 72947 28872 76986 53732 53980 80526 62771 99134 34498 13799 63464 20518 24958 03576 35661 04343 97241 40464 88792 78566 98715 88603 11683 32966 91302 68485 24114 64447 15534 64757 53386 47358 79622 59044 35883 28797 73511 87752 43632 48933 07951 24885 35868 86312 78553 89861 35595 28172 54855 80316 31149 65753 94382 29924 02761 14614 81711 91204 74118 59941 92531 43340 88929 26863 82707 24983 12481 75761 02344 92072 58209 22585 34846 00645 39254 84162 60982 14647 45027 48509 47943 38747 42769 70151 63413 76151 04118 90426 14624 11410 56667 82803 12422 18235 60531 23189 60329 92313 09904 85250 68604 09113 59627 60715 93309 06702 76747 04692 00368 93559 17081 05981 54630 81383 26776 82387 33933 42911 68878 01029 68167 94725 74885 23657 03334 05069 21317 76962 90612 26660 31277 47889 00416 54498 01010 03947 61464 08682 51471 38528 24837 42221 04881 41212 53040 73848 86297 93084 34068 45828 50166 87047 20466 06776 31896 73130 93392 19467 24413 28807 51680 93649 79725 54301 25904 43853 35485 92907 17437 72210 66551 76294 62514 76260 61554 94826 21299 81766 24454 92868 91941 00527 01108 89105 49644 13187 30827 21847 10720 77053 22944 19347 21661 58904 58374 95113 73195 92802 16175 68219 39352 62911 25113 08616 41524 11300 40224 07449 37531 70764 44375 72365 35679 22633 74828 47828 33826 79584 74801 60431 83443 93453 70035 89209 78677 88051 70348 60950 70412 16972 96206 70509 05334 46409 30282 26119 89992 62965 94016 19706 79862 06466 49183 22198 93407 27772 24451 03841 51139 71590 66945 79508 39687 84291 18809 79017 00854 46714 18772 42436 45680 31986 28703 40401 93508 88331 85181 19427 36044 46882 76055 72221 26417 54497 42004 32993 93248 31567 03103 97768 79707 54833 10382 69704 07577 65192 22394 29396 66317 00519 06771 30196 27126 53470 66791 18521 82000 54300 92938 79167 07803 78675 39466 05621 55321 80482 25963 95375 63329 49646 63908 70236 97655 94935 08239 21643 15237 51782 33913 80972 53192 15090 37470 14856 42873 97048 63594 45493 48935 09942 56675 95961 33395 73968 37375 60529 44698 50047 04184 99969 31774 97631 59991 61870 83107 57523 63639 25950 90793 59686 06492 74369 39603 56054 13995 87040 21047 78346 72238 61943 72437 20882 79519 60437 40945 48388 22905 77571 72673 28815 79793 37399 26708 91148 44477 13293 14189 08221 79708 73250 62369 04528 93255 50212 03675 89033 39469 37374 89773 12989 45848 08496 30631 52745 64595 63218 58579 17559 49182 97372 17373 82412 55915 98292 76257 45823 70492 65131 69027 12655 59571 54168 58090 01933 47328 49127 23533 79655 17019 56482 77175 16602 37549 25776 01642 71155 15027 94930 14420 97105 69332 60556 56920 76464 35674 73272 08545 77280 91160 58009 25744 36449 06353 59330 06083 67527 21835 11738 77302 93543 49770 34989 11380 04810 00466 54408 63596 41739 33941 46197 36594 02653 36478 07749 69442 76595 22196 52963 51697 01144 59607 32552 62466 45228 23179 79359 34470 16935 69902 78670 43107 96322 40845 63521 20511 93237 87724 35018 94618 30120 24460 07645 53226 49826 03747 79577 33062 48429 18606 27991 33838 33041 28957 29385 57318 04618 13174 04882 71378 65780 44653 90548 99073 53618 93370 32702 32694 97509 52447 08231 72831 01925 89712 69899 92442 54251 24262 16662 25906 57593 28029 88982 83093 88594 52335 89134 88424 80243 79463 26523 44932 29690 99214 87998 23326 31056 10471 33158 76053 33250 47761 14671 76362 22777 32820 23583 82365 31551 51150 59632 26098 69711 53589 26559 27588 83430 82867 52422 33911 37729 25171 34907 83256 24288 86710 11644 93989 94261 95272 55513 78714 16087 26791 94964 83336 58302 56909 59323 51121 97352 37535 49111 11765 50408 98412 31348 95447 33173 73676 59875 71903 42699 53423 20660 14476 65199 60265 02111

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 5/27/2018.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the table.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  2. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.