Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
50533 86843 37137 52337 77239 84778 34176 13686 60793 56308 78007 31922 81890 90600 07383 72042 01791 35120 86152 23747 07636 59699 11074 78012 82757 45592 44628 28641 01988 99545 72834 98834 51981 92852 88055 92747 76516 25421 96815 72056 46817 14838 52613 57519 56857 10424 13730 55539 43680 32303 26047 09726 32707 35462 30854 77458 08051 98812 97664 31447 07827 39254 82025 86299 44468 50741 08333 50076 50037 68335 77644 00860 46537 57279 00485 88316 41224 27051 54672 60253 46922 70429 68115 14186 27334 27558 26636 73902 67353 75005 06779 91016 68377 39828 33624 71542 68621 38635 63597 27449 88426 41645 92285 53224 00578 61756 87249 27438 25615 68603 45834 39308 52142 27622 77981 40253 82142 64112 14044 20467 01290 52297 37599 10473 74265 29391 43255 07689 65063 34658 19471 27991 82308 73475 56366 82272 49566 06394 78530 78011 00656 63208 02840 45828 99964 82008 21270 91051 87755 73249 08703 70280 50485 08813 55747 92942 16115 36069 26543 47864 74421 16937 41580 54826 22309 91950 85509 41130 34125 69319 39952 43158 56971 38990 41316 32939 31013 11711 63606 69706 34799 83094 26238 76464 55564 22677 26849 41550 84552 87986 99113 45193 37319 63595 95550 11081 99052 25197 95342 82923 94880 28654 37141 26006 85185 24073 76887 53766 85915 94856 70615 79342 13898 21773 82274 92146 57152 72015 16531 59419 70200 13267 76590 52799 94381 52759 47005 99880 03164 01338 01487 60775 72457 62526 35721 29679 75924 46583 25177 61434 05295 09569 07923 23085 15678 17409 92435 70450 95874 34952 90416 49677 63686 40037 74600 23809 86234 62552 61571 24348 25269 48500 19571 27811 07480 49059 01318 57302 19812 34644 01812 09067 29777 33974 41153 04059 30764 98128 72348 64500 12354 89612 14131 15447 55633 96421 08767 11348 53502 71100 04872 87609 55992 94808 65219 37158 40574 66378 99557 12001 07475 16383 22417 49792 99987 46196 35931 25389 49780 92055 37637 27423 47218 14121 53299 59855 36667 10545 94716 68539 36810 56528 42533 92790 85958 68386 54055 41938 12365 92608 96062 96899 29537 19923 02617 36732 56549 24361 57881 90201 63353 27315 03927 12343 41091 86604 73547 86025 97413 10533 48073 48509 76783 96961 40179 43014 05792 97359 01705 95279 63477 05874 56459 15123 76624 73390 58036 23013 40089 46594 72630 01620 62105 32034 86842 72385 34598 85185 40499 97084 28497 24510 84461 04383 14046 70524 63436 41408 06120 09853 23793 50304 34535 84301 46372 69797 39360 04909 04300 61760 91231 91018 45801 62769 36664 34335 02009 60674 68364 87989 19780 96154 20542 80602 19507 89284 89224 55342 77928 91095 77565 33993 35944 60138 66164 06015 31427 64046 08370 42604 57034 06097 50601 35760 43021 76776 77653 62344 65052 30335 83013 73143 77015 86363 64173 06932 68835 56339 42942 29539 49281 95201 10754 97903 53784 77907 98990 49139 77249 00996 74280 14602 31863 09151 58823 58945 29913 46763 75698 44186 91595 34494 19171 18770 77830 70834 50017 31627 48070 58672 15825 71242 43119 56852 96311 29709 92938 56736 73637 91800 49462 83770 27714 49026 44411 24045 56523 38696 72103 75857 21423 07986 97265 26274 17463 02995 87848 52693 68698 82812 72838 49409 48498 58574 25067 79171 24861 57535 69030 49749 30730 12122 13692 15495 59298 74001 10304 03905 84326 53141 35215 67183 05454 81870 97685 58801 18514 03945 72696 35065 10841 88610 58762 81674 81586 69661 60751 65284 87030 09506 97685 10072 10894 88230 35563 99295 59656 17654 45167 01856 82856 80402 84876 23865 18416 93961 08482 85201 62949 99743 97997 21075 67070 77148 21469 08592 55714 82628 15795 18316 73441 13749 94529 90829 54755 98249 80701 38295 19413 08108 64624 71023 92738 98606 86710 49028 50933 72385 45280 58597 91392 68514 29378 13847 28012 76550 76584 83289 11507 75600 55824 41392 74721 98386 75186 45146 02937 20304 14731 35620 29195 73489 84301 64530 54598 85877 06341 45798 93631 45267 23703 32116 44469 88384 32462 16506 84290 14941 39730 58889 89590 26702 46464 37637 81494 91544 55282 26147 96066 32521 03277 94396 79626 41922 19823 35504 09061 20341 09395 17300 37135 40733 59378 58881 62805 37478 72876 32179 26531 20447 26534 88517 30589 14059 53339 10176 84385 21348 50442 86958 74765 13023 11964 17746 61332 41532 86815 37068 96751 80122 61497 66657 72070 86906 67928 92019 87025 93921 16244 63989 45358 21192 52619 25298 75127 15796 42074 62134 74019 15922 76289 80704 79661 39937 06419 08797 64937 00443 00901 22348 58294 43346 28272 96997 89060 11912 64979 84654 57753 35837 28191 15062 31397 45301 33613 22358 63830 10037 78295 96636 41021 03392 48451 60509 51379 91387 52265 70674 81066 46781 77707 44469 34314 88136 75345 11442 78731 43877 66157 89911 15616 41351 74342 88523 75273 20899 85138 32821 37324 74909 27626 16807 76016 11882 82551 79499 30542 45497 15127 06500 00345 08671 32858 56556 65437 92620 68341 13120 31707 10924 87085 60915 01237 88590 20323 87496 67611 76112 22820 09813 36232 88535 55692 25771 69630 69518 94214 90798 57777 80394 60632 19401 13399 14238 81978 11733 92287 34920 72884 05153 38614 41179 43390 50791 55241 55677 31757 15107 99036 39064 62285 06457 01181 29041 28119 26655 12487 04424 99066 47532 73708 74203 54402 12503 10851 91606 40694 63126 55490 93163 54601 90668 90077 62768 50695 12664 18255 20737 74271 74480 60173 37880 19157 75881 72794 74552 10531 22583 95212 44726 12731 02826 18961 05047 62065 88930 83329 68901 24629 63860 95671 45474 79115 72790 76720 03814 24626 99659 30903 61897 13488 68742 41647 00685 09061 71207 91698 03193 68554 16679 08430 18548 50834 09804 34159 51052 49244 51807 21455 74248 49408 67060 53453 69976 12052 54642 89169 92443 80808 64901 33809 57280 15035 01016 34082 55605 47623 45562 98516 93089 67812 12070 42766 54016 29002 21591 59929 90344 81564 04259 15856 35771 30658 25851 69464 44797 19037 39352 18049 56781 34867 61515 67599 85011 44536 74428 28105 30764 50466 52070 33875 22365 73930 11879 88846 79254 62857 91313 36896 01047 24652 49412 57156 81597 84002 93358 84327 48059 65695 30043 53984 24951 02426 42627 72898 23216 67615 92102 14339 54287 33217 43856 38398 69145 52534 19233 37293 22388 68026 72095

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 1/20/2018.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the table.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 1/4/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    1 1 1 0 0 1 1 0 0 0

    From the table, we can see that the first entry is "1". Therefore, the first volunteer received Treatment 1. And the second entry is "1". Hence, the second volunteer also received Treatment 1. And so on. The tenth volunteer received the tenth number in the list, which is "0". So the tenth volunteer received Treatment 0.
  2. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.