Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
32310 05576 88750 74061 82379 58418 46067 79575 58438 77434 72442 75180 72431 58039 87878 82120 16868 53951 37472 46350 10140 41249 99234 15092 66828 07441 16896 38402 93017 65519 57723 95729 06609 93030 95332 47479 82634 96132 17496 11578 23564 98659 58962 65034 54625 56184 59264 70501 44109 95080 45531 27837 48688 76583 40304 50672 83723 85856 94346 67966 18583 46049 44454 50577 96948 57365 96274 62815 82131 61116 32113 39015 27385 28796 43749 85089 71218 76130 90245 05097 57703 02151 80763 52805 81791 53249 82375 08248 59628 12244 52875 79293 23860 12443 98591 28203 43952 76704 57202 23196 71497 81496 05544 15011 10529 45968 92427 38469 12836 46004 96446 39034 98274 53289 08793 24380 00075 99374 41072 40946 35166 64732 58108 75508 99474 92827 35761 81732 88246 29173 43740 31746 41355 85397 53413 92692 13618 28302 70621 28299 70103 93929 93491 25438 06447 26620 95246 45686 94165 43081 32020 01891 50963 21443 75670 59735 36051 15325 71588 64290 70455 92897 21514 91589 82332 00942 91346 25183 77278 53921 43958 57705 33645 48030 97006 17431 22848 00268 05746 19848 54685 12497 70844 44209 47643 60502 71187 35100 24214 08062 21698 29001 31205 46001 56147 05852 85052 56259 34967 65609 42135 00952 78060 29810 94086 36434 22616 68141 88102 52359 05920 49992 72261 35745 73169 21023 65833 60036 10282 04727 54589 99163 01714 28991 11119 66609 13267 77659 40141 79471 99902 67093 48814 47519 38555 47741 42051 87264 85945 30692 42833 61017 61391 39242 37518 40952 54620 85460 46156 98168 58582 71742 17801 16753 27263 17384 50823 32848 58496 10134 38222 98703 01775 82763 37938 71747 91066 14622 68166 28646 02620 58208 27667 04367 37785 90724 41080 56241 30821 90643 29238 53023 81710 39270 04475 88958 13969 47305 90942 22841 57461 06403 69922 42081 56212 65742 50134 51761 01218 33578 63055 88705 88263 03815 83228 60535 00727 07562 73573 09739 17399 89699 55704 02727 45293 10436 05236 43902 77457 71879 72102 14715 75786 69592 25864 37729 78837 69155 26026 65687 34638 07735 17344 95566 58502 20638 50142 07645 15842 92882 25622 29569 29978 35752 66178 25405 14955 88364 10708 09711 33352 44232 34926 86593 79097 02824 96675 13773 85276 46129 06239 91648 56949 40216 21657 77353 28961 61802 69033 23823 48754 49808 87851 43858 84183 81927 01287 99182 56321 76181 11518 14508 97280 17488 20041 16601 33018 09225 72979 98338 91153 49786 31399 07771 33776 34148 66620 62192 15264 80432 80527 87193 65090 81466 50886 80729 95639 81348 01654 02182 35016 77009 98290 86420 84865 44773 68070 82864 03174 91921 45401 19548 12093 33254 42130 92180 30745 92655 42856 78208 33037 29652 25249 75880 30473 90980 05352 68309 79970 87142 07905 12530 16665 93976 61648 53571 11732 79211 19640 63507 55191 54035 04567 05528 63722 49655 79057 22999 13481 18862 40993 53525 97904 62588 43822 68010 10529 81475 41873 34721 52803 52433 60665 08353 66894 30205 92219 44086 93506 73927 15374 36655 54693 98693 41100 84404 61665 52117 82806 78355 47608 15894 51654 16270 25492 32366 76874 41707 70883 56077 51075 08092 29762 30347 00558 67774 51326 88822 80626 86091 45813 82046 95899 80432 67305 29020 45627 84300 21546 93763 94000 36373 98752 86877 65464 94566 31424 92109 65028 75096 77160 17911 23583 16545 26471 74007 68210 68918 35588 72951 17495 07710 84277 56694 01839 72965 58653 48141 08772 33342 58990 27718 53266 75176 32537 34935 73048 16539 31325 94942 48910 46303 94985 70101 50021 88207 58557 36539 04247 89911 85303 85718 93451 37068 24523 50995 73818 92377 94361 59181 21160 59655 89623 07109 01229 72890 14589 63193 65032 10313 40822 93992 69144 33453 89983 15772 21015 51201 41643 71068 49291 08878 66098 30248 99119 02290 82176 18074 52463 16795 40054 65265 73416 91363 29070 85058 78513 07641 10533 74776 32041 04015 75538 42382 66355 14669 27778 58050 27190 33654 91356 30720 43970 03944 43597 09666 25124 31502 72861 11057 78398 24342 61358 69517 56166 56591 92955 14693 25742 57553 85993 72809 64698 25768 51099 93238 81170 68078 73996 00059 59170 63690 23319 68618 28908 53233 83425 27096 62091 52828 12204 83068 92248 93144 23897 75064 60033 83465 96903 49136 83544 00750 06595 60418 53631 03698 83130 99685 54211 71805 94263 44924 07581 69433 53159 37889 44729 34871 51207 85664 00645 94393 15829 87232 34638 01326 93296 85030 75644 00110 56540 41515 92541 15359 37963 40726 89462 65929 87255 14848 26105 03973 54202 95771 63048 79010 96499 91656 32059 26982 12568 88495 31411 84322 99361 76675 46193 27013 35181 02540 93623 34650 87490 44953 93360 79504 45723 16860 62818 40588 79100 91852 37477 42709 19438 55725 16195 20544 68966 83046 31523 07692 33133 38713 45013 50741 78425 04521 67538 48329 15176 30718 04595 15210 05379 12575 26625 71311 95500 91944 64324 55798 74290 83821 28952 66138 55598 27910 57648 22162 86183 65183 83745 55126 78527 39444 32078 21774 68647 23895 39298 43401 98907 72691 99185 69916 25832 97508 32962 68903 52918 69104 84604 39685 88450 43882 41154 52384 28306 15451 78032 11988 63777 91191 29352 47408 14376 93813 83229 25546 85651 87923 02098 90352 51998 31582 68018 26893 64472 52874 52994 50407 83603 51463 14283 20373 37204 25158 14708 79572 03186 21474 67971 18146 17371 14197 08967 62664 06303 04945 89093 90182 45062 49728 96563 67309 40074 10518 01720 14265 36927 31801 27348 93946 53180 42148 43987 25989 36178 80775 90240 25828 45864 49103 18091 68763 62592 87325 63216 79019 19935 75964 40293 43808 62505 62438 63318 52395 28761 12622 90914 60157 58819 87411 96649 77647 27273 44283 64340 84656 00997 63858 08374 69276 21966 01464 19017 91963 15063 63700 32724 74597 20896 09996 27455 14548 53606 79175 42988 23736 83682 41020 26227 92695 45776 72832 01520 79634 71507 60993 65967 24500 47285 27531 09736 88041 97114 81681 61373 15870 90410 96447 58115 27524 74811 10165 41204 30527 33988 53066 76198 59457 70465 98838 98283 40004 13420 41187 82588 78032 51509 95403 39494 73646 90668 24921 34951 60249 36936 92880 35785 68611 04259 38691 80016 15924 47304 79598 72165 19871 19278 37235 03573 37683 54732 89199 97707 30208 77378 45601

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 1/24/2018.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the table.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 1/22/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  2. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.