Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
43628 77805 84765 54161 18892 74692 51060 09400 15795 21116 25387 70625 04510 62810 01794 61937 93976 29200 23255 60662 33470 28713 95735 55161 39157 69096 27247 27642 45665 02723 91918 61973 82637 96909 19052 76496 76300 29225 07189 81836 76027 07805 63171 63718 05894 16666 66204 90776 41250 86012 56919 47365 10275 87555 51436 91379 20543 54821 80424 37056 10587 28466 53167 62797 26456 26586 46624 43973 23284 40032 19493 10742 91849 52722 51272 30859 10134 86952 06323 17490 19895 73708 22932 62022 28218 47984 27376 91879 34083 69086 72981 53331 79927 65951 04187 19309 28209 07458 45608 22216 62968 97739 16100 11742 16386 96491 67816 37673 20356 64293 50274 57706 83038 32913 99419 70258 90424 00625 51681 72286 32900 52516 83043 42090 56812 05805 73102 47134 41022 80152 94129 76851 98477 92970 25133 00463 02765 79738 90927 49785 39685 39316 26184 27047 83803 04252 64504 37699 00017 36102 52474 48225 70121 45736 88735 68961 44366 38652 88037 61898 18020 85292 70310 73503 32936 16350 74719 92527 04110 43087 98731 32820 71245 02644 62177 41139 75314 28350 96312 29968 60123 45042 57882 35322 98871 89371 68181 99566 45713 55117 77118 79225 12327 63504 52277 77796 69470 58505 92980 03562 73545 27164 69352 52402 18161 44902 86377 15608 10698 45831 72970 12691 73867 18068 96029 49201 72273 24046 99508 99532 63980 45826 68470 14741 77069 55411 18156 55356 11204 10059 08044 49191 64196 72594 80915 74158 83559 56716 26911 66077 43079 97322 72601 51494 44373 45807 95041 05487 43454 90386 60839 34483 02290 01402 90217 84070 65370 01640 46070 71808 61264 61638 48035 45040 29188 20001 11546 63711 70563 28711 11903 08173 25582 23446 73330 12000 74768 18882 83041 19805 65538 29016 30300 70045 63769 12472 70484 02838 30356 42816 14146 92776 22774 03866 41077 06734 21646 10010 39369 86687 82299 51512 69477 57519 11332 64828 53283 59836 68174 27919 88156 07781 91651 80561 86017 71842 51543 69660 37397 86669 25151 19562 00508 83885 98859 27369 15296 49898 94694 83247 42509 08711 21891 15743 27760 29741 53454 62095 90585 60626 27719 63543 38511 85038 74917 85646 06113 05499 68735 63591 19081 51189 02881 72505 83281 10762 92644 22771 98816 90156 01459 80337 99092 95408 92465 12030 14876 40465 05073 55870 63361 79995 56526 16379 62229 67203 68461 84897 68713 36642 18471 84890 43660 12022 16671 42269 40590 39029 07255 80697 19764 43134 95064 41904 87242 12403 97145 30998 58949 05314 19314 86779 49735 83568 57721 77052 87437 69900 25408 18937 51944 30894 03876 24182 39259 84794 19645 69480 50560 34314 45816 91773 06263 24456 28635 08574 85085 25320 39056 63271 88106 39914 49303 95447 27832 36970 34429 36187 42259 08755 98884 28392 33930 53883 28076 72093 34004 85129 64929 94761 91317 62240 11451 46623 86439 49749 55297 20971 70745 99786 21324 99475 30471 59890 48163 22499 75779 05826 89774 84409 54820 99391 42013 53887 92795 71231 94194 19247 56020 28652 05647 58739 40984 88433 07288 35873 88417 34636 28175 19720 22347 01424 47074 30235 14168 80868 69020 08560 71699 55762 26882 12343 53245 57435 07921 36048 06666 48565 05356 56268 33431 30989 94925 02039 77688 78517 36449 50147 40321 94743 00393 45448 18017 95860 19430 46175 67324 18471 65000 94254 93717 52401 48878 10613 65660 98511 49732 15498 53666 51510 64686 73783 94363 07765 85887 65284 79553 98118 02060 80070 70278 45694 25077 38778 35879 48719 41517 37921 18063 88325 89227 20207 19960 61370 58886 69846 20189 38245 20571 32864 11921 45690 75311 62416 66940 74604 31659 89101 24704 12860 07247 16268 06411 03116 55353 40335 54059 25626 16461 96098 94509 06055 94825 27044 28551 48292 60033 80665 44957 92260 73563 28769 59556 96730 40355 12793 79287 47131 85366 14114 91266 88369 55134 49365 76845 82632 44344 90745 50680 92205 47386 11330 24789 87286 34921 55390 97615 78794 55441 33697 68090 76183 61834 43840 74696 70255 62943 15537 59531 40972 00132 80949 57364 90270 48846 69987 09707 99867 45175 30632 03870 14083 37417 74243 37027 47643 62639 45869 05278 18500 48238 19565 17712 05638 38508 18700 35466 31891 46200 61275 35794 71752 29082 30229 01123 84187 91508 68758 33120 70448 10973 00622 91751 56883 89680 75462 59348 02751 31104 39107 29665 33035 41547 28895 21948 96250 56711 93976 19991 47262 93250 40631 36203 55095 25343 02581 00669 35746 86245 36304 75210 09998 94861 41340 92450 86231 07300 05611 19876 68235 93440 75729 48900 88024 38494 52312 08923 63645 69566 10292 06396 81993 07220 44230 88883 06626 42038 38630 34125 10572 36183 63249 64102 34143 49966 93410 84092 67752 93401 55316 46738 59720 02774 96360 41109 49092 42204 80441 06763 23446 30200 08272 72805 01710 91234 62697 21958 41971 32292 78999 79618 74289 44446 40218 27920 58508 29411 97457 44801 67071 51108 15201 68058 92831 12231 41625 84417 81864 55801 03907 43591 91280 91738 28543 97344 72038 48416 86657 63554 76755 49231 64315 15272 92522 14159 57837 94791 98717 86322 94107 52702 49813 83547 75893 11961 83193 74934 52148 56948 51966 82411 13335 47534 82771 07303 11729 58139 58600 81892 06736 41795 26601 45979 35202 19212 30898 48447 06730 92838 70396 73823 23985 85920 81602 93843 28014 06572 46431 44009 68555 36828 25021 25159 99350 46717 13545 30022 98455 33313 27023 94788 13557 84807 07137 75663 32286 69563 55039 50436 77522 50187 89170 45041 27715 22581 28065 85119 62192 80015 98170 72581 31471 02182 66656 87169 52576 69263 99225 13020 29345 00992 42931 90227 97747 20714 33985 91405 96191 44450 30573 23249 60839 94962 70664 53099 45923 40810 54825 60502 69050 60417 54035 13775 81521 31134 42494 71567 63640 43299 55438 09420 45026 39301 71950 71336 49930 77641 22773 46332 67542 21999 23123 70013 47306 55290 30502 51123 19233 18730 27508 23117 39214 75902 29651 20717 59330 01810 18162 81478 23165 96949 97808 72349 86122 26365 79704 41238 60731 83715 89123 93569 86964 80333 98315 93852 27547 59294 84310 92238 88271 34469 11739 76088 63309 54595 40643 46530 05522 92335 59284 20026 21778 58339 41960 54932 93258 40308 31818 03059 20775 67058 48663 86241 95083 97579 21773 97891 92187 35100 47713

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 11/19/2018.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.