Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
57575 45650 70920 70373 14975 46031 77029 55292 75477 43749 71203 35782 69970 77385 43952 21565 25535 96946 51506 25197 60757 77925 73632 88627 06038 60367 96446 34762 48909 12932 20221 44027 04341 21953 92205 55931 10060 05503 64431 95626 46859 52456 76528 25472 83908 86547 63537 21598 49071 55439 88721 75464 24213 44783 01378 20428 65518 17280 19654 83302 48797 76745 38354 60917 39803 57168 61757 21689 89544 36778 61427 32175 54593 77105 59026 08643 42402 87041 34124 93627 81616 11906 57016 57494 17381 47505 46531 25008 31662 79197 52847 26886 88553 45952 65300 76367 04587 29418 45201 70772 44052 67979 83644 18066 39305 95822 84321 88421 36077 06994 71336 90778 63794 44471 22015 74412 30886 14217 24717 55490 45097 24244 61651 68639 58802 48681 16685 43501 39317 16830 08161 06305 64210 27232 46704 06422 41619 86731 18039 67930 55557 74529 90800 66177 36232 31260 49343 29342 55353 73043 51560 65001 46447 30546 11690 11685 50170 13055 08134 15445 84618 97528 16263 31414 40642 42662 66235 50369 02160 27957 25806 50295 91468 17773 08139 72947 39553 50398 04625 25410 81407 52108 42684 06666 76337 76228 68589 59151 53280 67199 55271 45323 81115 49637 35131 49223 63974 42394 57861 03032 61555 97626 73245 38643 34435 64850 38980 64215 14383 80009 53486 65741 99672 79537 13717 33608 75392 39415 97974 14161 58759 39239 73721 86261 69434 51282 30391 62856 24830 54552 37206 17536 60427 73862 25981 36096 75082 43884 98946 93104 01347 98219 61551 53459 00775 83456 80281 98954 84237 98232 65469 79839 57231 57300 79110 91384 90199 80588 67668 75441 13836 07263 19896 47005 39401 34790 49641 45781 04035 83002 03664 12741 41070 83153 94445 91690 75340 91989 58003 55829 43497 30803 36700 59312 39322 49506 87062 13816 84036 15680 12586 90100 21615 28649 21555 44565 39103 58536 09849 70822 11919 10327 68757 76250 74176 12935 17794 83559 13991 33261 62506 57356 93797 15255 77291 55703 95655 43982 13203 06683 91569 34684 30771 09959 38795 46838 57809 63342 00157 23225 72229 14345 89358 53986 09852 36756 41291 65691 97221 32191 07355 35397 09417 56662 75762 29711 52867 72139 16856 68854 73157 23109 53422 15724 87848 38144 55998 89954 44283 56458 63189 06980 02407 79474 26978 42103 42572 47384 83040 19546 98353 40710 46055 26523 14361 06871 30017 52297 29054 11743 93551 52247 82550 16220 10223 36924 49441 77779 63852 86121 96602 77041 68824 87928 66008 69335 15404 02802 82543 61259 40048 52624 86814 12242 20717 34763 92961 61109 97187 61139 71475 77641 16364 22285 57006 39140 02594 76411 81175 31989 52979 63465 30391 78215 57686 44194 28657 87052 45260 64210 45391 31506 52940 43051 28229 49911 21966 88242 60844 72500 17897 34360 45758 72959 75920 07093 12151 44995 71162 12309 48677 03899 14006 50110 61274 13104 70400 53902 55979 35751 07172 54451 46739 11250 62340 68951 88222 56844 40427 15085 33634 94169 32773 50085 17525 00820 62844 34798 63609 86910 56551 22743 17569 96635 37557 74183 04877 34834 47592 95177 13599 18556 91765 01649 02213 53616 08874 08450 32420 36164 66725 43418 26956 79241 82438 86441 52403 64350 67761 33522 27006 18009 99387 85839 53479 13320 14258 63807 76825 96531 29887 46144 67141 38593 89663 33931 27439 11729 33167 39673 26448 90996 91485 01365 56435 80842 07518 21552 16017 66674 81297 31392 17966 91418 40293 79720 22030 57081 34733 47108 92742 51317 57909 84929 82232 98985 91492 79421 38040 38715 75844 40745 35929 24467 05332 17051 37697 52096 48638 33542 73990 10917 94076 56533 52114 60261 19896 82513 88848 31042 89608 52211 68254 52320 72284 89657 24495 02860 87876 66244 49642 87697 77529 89790 26489 39700 98890 18602 86366 46129 46424 00538 91949 00204 96722 37069 45076 77664 78821 72341 19557 38329 69507 07240 18986 52664 13636 38452 59556 53341 69442 22524 77870 11802 78849 64933 63754 39820 62786 34142 18067 16065 41499 00663 35519 37660 79862 01125 12477 96751 57691 27331 79783 82065 65056 40321 60563 05473 22591 09439 53040 53553 26813 76388 38349 64153 20427 44300 13347 27954 87644 91796 48425 15029 74490 12043 70323 26410 34121 76827 69941 70648 97133 25607 35150 65377 66878 79579 08609 63873 39773 80743 70572 06622 50614 55960 46705 97877 42889 06016 40895 07225 64088 19689 93066 96146 86020 12803 61988 69579 50122 92300 33093 52480 37771 45294 51284 91389 65601 53139 78750 80989 05808 30490 77776 15672 31472 89364 18561 66098 86859 28206 12022 80759 82744 45946 67614 12542 16716 81068 76139 70292 18491 75668 17559 95371 20231 64517 93810 63226 51847 89126 86611 09946 61321 36804 40279 83829 60010 04727 69543 21940 92964 88994 92352 51680 34238 98693 87694 17341 07201 94963 78400 31673 29854 55057 38964 52447 85137 61402 28352 84013 16243 15664 47816 03868 46936 77811 23704 14217 26853 30173 15276 18530 01827 66506 47512 23114 09193 06054 68931 63669 98102 32613 34396 56849 74835 58591 12932 76832 73114 14072 20536 56875 49414 60879 77991 15882 03278 31635 93677 09961 22627 93827 71385 08992 54074 38866 43126 98186 98235 96154 26950 04649 30043 72143 09752 48944 44059 14396 55088 21652 24787 00654 35987 84938 41984 52896 92761 99111 70973 76401 15823 74187 37957 23813 53495 46451 90330 84200 44820 80021 91989 97119 77377 93408 43648 91677 70094 11082 28151 50596 81058 40031 80782 99271 40329 71326 84578 19839 07751 06681 90646 90235 55767 10019 63468 48258 77231 84032 51220 80633 18217 71743 81080 37073 35836 83071 79544 69342 81046 46390 17736 95316 06466 85095 81722 88050 99187 19164 67822 89835 38585 91717 02921 51261 79134 20583 89784 95286 58218 74860 77368 06289 28943 76478 56133 44141 17952 26761 78355 83261 08234 57991 03440 76683 46938 09969 68235 45115 78188 31577 82340 91007 00889 07344 48424 37605 51549 09004 07531 93022 12081 72061 09400 39294 42624 97351 07772 46448 39350 77605 80706 11560 17282 49012 75886 22819 18099 67777 80943 48592 42955 11690 18758 51481 10288 06686 67779 27391 38636 78405 07334 69591 54445 28758 87941 57773 24883 37486 26624 72120 15656 88728 27221 32364 73815 22576 25701 61851 35572 11644 60473 76604 59113 62629 67700 99381 82407 42870

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 2/20/2019.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.