Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
59650 70429 53566 01487 34476 99004 33686 88593 15759 52346 07083 93133 52945 13371 31259 23853 76045 23296 88812 14206 40948 45702 95252 98915 99735 55594 31810 15535 95992 53468 03252 31016 85121 04367 20695 93264 79652 01952 09412 07705 19557 57555 41650 38847 67561 14250 94442 36843 29458 85909 32418 89052 99417 21270 15619 96604 30302 92994 32306 75959 28980 11732 56780 85474 76632 65186 32184 76960 74071 82171 78326 72251 12050 21676 24483 64761 66576 86931 67220 46049 19223 64465 53197 57380 02442 88170 86986 66289 69879 28367 63882 68145 91679 05861 27714 12709 74808 31010 53659 55700 08359 67785 56053 35357 33865 22833 21208 74001 40616 59538 65217 04595 85966 37087 16774 22314 40648 74529 24980 61097 59089 39839 92162 95219 74715 63979 31681 65848 20274 79963 50744 32609 73139 86919 58220 50148 25627 39151 97449 69690 80305 60198 04059 65608 70311 81903 88773 86979 04660 08471 45225 34151 38557 05534 82772 60305 68714 14211 84305 98015 53655 90171 89064 10812 59038 67700 00449 69748 27959 48755 18832 54955 76269 17034 99371 82211 12884 77035 34820 54501 85102 18121 63346 38578 48910 03578 01335 66530 64299 84682 01211 62336 15576 39760 34245 93434 56680 38250 98367 47283 81488 29770 50982 32920 19132 58172 66778 07530 54310 00610 20541 28004 72600 31604 94967 27502 30771 12096 13477 17017 52096 03518 98024 11935 46663 06853 51911 83600 56690 26697 67599 35877 26838 60321 59523 06710 99519 11736 21904 94690 35213 30753 11559 10614 57779 77045 55715 54048 24766 09212 84824 14891 22729 98843 90370 99937 87539 69576 07687 84435 49694 61163 23769 88656 04634 18534 10081 79451 08056 05853 80375 96816 96218 45587 73500 05455 31263 82569 61214 71341 71520 73052 80999 63279 66825 98782 93873 79467 78830 06054 67199 99064 26315 69776 82503 58744 55502 82532 68281 54266 35367 68646 57816 67032 77952 23240 71989 15653 83678 76300 27089 32506 11658 81740 67629 65304 75008 31460 24158 03651 61161 94411 96071 30612 77180 80658 59425 99267 20066 30442 99747 34282 72077 28241 69852 58465 21037 41834 72650 44332 05648 86365 68964 90668 85804 13403 10338 24091 37903 25003 96850 25613 75158 12774 59929 82203 92912 21937 70160 63350 38951 40388 70105 22623 08812 12762 32107 24238 66101 79496 41110 94617 87800 40888 02466 98952 34584 46163 74751 42767 46134 07535 27575 98479 61444 39266 24397 56964 64138 21735 30334 04117 52783 90495 44979 22414 36197 50336 60207 17477 53766 14350 42992 69634 20756 67994 43218 10484 98624 58148 26493 24455 90328 07181 31957 75373 60645 52014 55100 58019 81482 08180 55572 74693 02185 58888 89995 36780 44855 69086 69777 91307 24660 24522 43922 72508 95144 95808 06847 78387 18546 27481 31189 72281 61108 52066 25621 09420 13387 29141 17663 88492 35570 09395 61498 28205 27784 23692 70777 68847 25414 97138 76441 98853 19405 88136 09525 06363 01587 52455 08977 55787 34978 32288 54464 89369 49100 70316 24192 53745 60293 48773 77712 51510 17025 53505 63737 17775 70205 63033 52951 21739 68496 62617 95825 93239 78629 83318 05426 74324 30711 66060 65232 95810 88543 50693 61943 78845 44929 90055 43295 61474 41990 89035 00871 50196 16474 68636 77915 96531 70072 55034 02142 98581 64728 93647 43554 27591 42955 88192 97250 79517 73141 64748 91239 51579 19868 60822 19252 43834 39221 39408 98556 85731 99101 28052 52766 87676 24540 82912 19656 17596 68010 77822 83975 02498 04735 18354 35253 55034 53008 80883 50622 25066 19501 76644 02621 76221 69576 40800 92014 87461 22599 46501 05599 79642 72253 43949 99021 67076 31850 24459 04586 34095 04644 09521 64073 36615 79141 64863 86546 28693 49414 39516 31166 14096 60417 29873 15005 22860 78292 68751 45856 12850 85689 39458 80049 96330 02070 14851 05261 91519 29028 21401 48329 99154 20599 28256 08064 04057 78571 61299 13059 01693 72798 42217 04509 49734 86513 52560 44014 44620 86643 22801 46401 23127 19115 46404 37531 88922 29176 18882 37112 64131 06700 01864 66511 65898 56501 12152 81571 07950 93651 35787 30417 27159 63784 67111 36274 35102 88415 72830 05274 94628 35252 81074 59276 21417 13504 95464 93671 10543 94198 34169 60198 88037 55489 93972 74757 87451 52974 39334 50220 51418 15005 16451 54245 58215 62997 92322 92087 73327 56748 18808 14411 26008 64745 21696 50105 10844 59480 14763 64093 14316 37760 38835 40144 66362 66022 25851 88690 16939 50644 87927 79635 37586 33258 31417 00167 47987 11063 95975 37573 67533 82137 18619 87048 91885 15747 22792 84513 94534 47667 32427 64422 53368 00486 11006 42576 02231 28922 25625 23938 07486 90134 36057 35442 69579 39036 08810 83809 49600 48607 56195 38356 20846 55206 00388 38812 45384 28883 62486 28125 75612 68692 76580 10283 80824 23003 28807 33118 98769 34816 21420 96123 12218 12071 61847 83266 50523 22963 76754 20796 16179 16253 51108 60063 36391 66581 92240 85326 39630 44778 18904 46566 57203 13178 75347 17301 49807 45935 70363 77395 59101 74328 41361 20872 84260 57080 43424 88731 83542 75665 63375 26752 00849 54627 58838 68317 17291 06886 22300 42216 27748 04056 70171 05462 42431 71752 56854 01102 13444 09907 13799 41033 86352 38083 13572 13810 76736 65784 58912 17462 71761 87766 96798 17303 56734 04353 57511 28745 66674 66748 18693 25107 62864 47343 94411 70436 34422 35037 49225 77310 24860 55544 37240 89656 83647 16707 66178 90561 42772 78810 86436 35086 18305 49892 05148 08074 36961 06057 25251 06970 87662 36789 09544 49625 98101 15264 69750 07115 36300 93659 80585 61550 37178 23471 18811 88889 54111 00823 27305 66751 35492 36782 04121 07226 26299 52667 16550 14690 94653 00364 40184 68618 83382 07637 22978 31393 86585 48443 74313 81122 51191 38243 79059 69447 03525 54313 36636 04358 00868 81058 25077 58004 08022 80326 90092 99507 98868 86716 59128 52775 82936 27897 80433 79314 56959 69915 87120 86037 81442 87507 86224 58084 82220 59414 72773 16627 77025 88695 68841 01687 27045 48036 87620 79946 13486 50065 22475 77555 39138 42665 61008 37955 54935 29284 24126 04682 11517 14249 30095 29182 35795 73079 83609 03625 32512 47797 89850 18714 10804 67242 93552 46502 35766 92382 43059 48201 05010

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 2/24/2021.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.