Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
56370 92922 04379 25422 39800 32891 38694 84807 99660 64274 36661 39562 14423 07900 67037 89669 65393 76106 24066 58646 63272 93042 66542 76357 99714 39990 81876 86827 23896 25671 75150 81052 44076 81561 83187 54816 54157 82203 13611 91498 85248 90517 08908 69889 82228 28116 35491 97002 05309 70617 97760 65885 56596 67951 77166 38433 31652 89683 96274 53202 96060 95313 07825 58222 86983 29600 08798 68805 39730 42867 79472 50363 39318 36315 47489 26218 97031 32340 76919 10414 51988 69839 82318 65530 97699 24526 67794 85493 33635 54243 91068 03391 41783 69276 52537 24283 88214 27663 09335 83013 49644 55508 14399 27026 64994 92295 80527 24173 11956 61199 69445 95530 08554 64399 05865 73208 39705 03390 16552 83164 08786 24298 94383 53018 14191 88186 87409 44860 50896 66375 12924 13066 37024 60752 96519 87111 65401 49080 36149 79379 80128 55316 91195 17975 78132 44921 96527 04543 35740 45170 01565 97071 60231 90470 34342 17709 66408 92667 90568 85579 78153 36362 47690 74589 54994 99223 03956 96245 43666 97295 42479 07460 54672 55317 20294 43374 63849 02029 82428 75160 38927 90489 00958 92837 91095 43385 39073 13088 51560 23344 40138 12065 73110 28249 41758 83207 56680 11547 14836 20051 02911 27567 27641 24043 88713 01827 34866 37353 68828 26349 91694 00684 02393 79974 92856 36089 04503 73669 36699 54780 22771 20843 14244 89942 38893 32659 23252 54544 95207 38349 07283 24155 46263 30519 19762 44752 35376 35470 13037 65535 96195 08507 52448 96741 79263 54249 55384 92451 03580 71945 55345 58411 33167 25787 91011 84836 78625 40220 20298 04226 23700 20253 59423 74182 76846 96777 46965 85211 47786 96873 32932 93547 49074 39126 92817 78954 22661 53938 66666 27549 91451 28840 23137 39606 35873 78804 48565 62371 95433 41554 61021 47878 95284 97884 49379 35757 97786 16965 37377 61047 79068 26659 72675 87012 30591 08832 40925 62950 85712 19668 04828 07007 71241 34978 68200 13989 84013 20516 65029 88173 92441 27288 73546 01125 63084 11868 55279 74504 12207 81709 19121 87884 82348 65454 10392 11557 43871 08250 24898 64354 21541 92063 47996 96451 46075 80985 18658 97185 30713 91550 18530 27867 72774 88047 85997 79591 80224 02830 55245 56050 23235 81633 20324 81346 10749 53882 24207 32806 92039 28005 72859 98789 83274 11748 74293 61504 19078 57484 02636 04820 29097 32530 87191 47077 39557 14454 26500 98902 99830 11394 27404 46018 33994 07364 69110 57060 17397 32570 92247 16384 78219 58722 12935 81882 24035 19347 61845 67793 93375 55101 48260 52518 32291 84081 49139 11429 95916 97137 23180 74682 75027 78186 49881 10034 47610 49525 93603 30649 55418 42141 92634 27916 05537 91026 73250 29257 96949 55487 88777 80943 72090 64462 83654 55905 93419 86828 82498 86547 44974 26718 04162 22558 58940 43830 00800 13723 67207 98741 21930 17740 77935 23221 03496 33027 77118 15542 81930 56539 55142 60792 33214 66578 58350 76191 36944 30606 65607 81397 65393 38057 89858 93824 97570 58153 04694 48952 58286 22710 95910 45639 82214 33956 38075 16435 02956 97342 96086 22894 67098 79353 51737 75887 73281 90323 55279 80913 36255 92244 01980 08412 75949 31584 33693 89080 31530 97093 65413 34176 00464 02620 36845 80842 02582 94924 88962 62408 69139 86486 65567 03709 56881 13325 39862 41397 87102 17803 66001 69253 09711 56447 55662 08499 92292 32752 79602 03110 34167 55002 94224 40128 05460 19077 93137 94975 11158 16267 83721 01764 80172 66085 88686 48610 79403 74079 72639 97947 52804 14644 93643 31837 85437 38838 79779 22281 92545 07187 30711 26539 33606 47507 44250 07433 51398 37708 67910 78665 36066 13611 75476 75129 14178 01762 68568 48224 62790 77240 03195 86162 48510 46470 41328 59288 91559 55042 27455 90385 54835 20514 90146 49993 57971 90231 68617 76715 16404 24136 64289 22535 05433 02582 17354 23128 49282 59144 08337 93174 35165 38433 84655 46667 52346 78907 12183 42233 56202 20685 51816 53436 57286 38357 61031 64096 35388 98800 20449 88599 78602 43987 85400 17210 47383 98803 62479 86386 63610 03855 11119 74086 24655 73283 70142 20088 42437 77579 09331 71296 07490 51391 05986 52057 78022 26341 46491 59473 93982 88838 52873 83711 16118 62886 34367 53317 90040 17900 63977 05528 35287 01520 80038 81585 59385 97416 12783 47048 96908 08111 35898 37102 73549 62785 43091 26875 95170 50093 49651 26750 61878 75971 19012 02676 07075 46458 14315 21479 61531 75499 74971 21178 42438 17763 18221 06296 67478 26456 65702 68173 93884 36129 95009 30276 82503 70494 16256 18514 86855 75235 73637 56552 67200 75824 71993 86118 29601 60327 28370 12321 89980 87223 48587 73962 63187 18212 28791 38844 77061 76028 82025 24088 11490 27257 89789 41443 62477 90140 78605 67600 31200 67395 21572 39502 38075 04022 64939 74662 61818 70120 79657 16469 03511 68698 37950 04505 75660 68489 14873 69854 16258 61758 14875 55418 27851 47120 23364 61229 41597 37350 83264 14756 06331 92196 96583 66228 02626 76189 50976 08935 81853 41460 71300 24548 30251 35550 96186 53432 57981 34220 79594 89951 13194 99269 17380 02789 21091 61344 98857 80257 47988 27749 83357 00609 90374 15264 01794 27352 88978 07951 83228 29559 67831 39974 06424 27183 98324 03402 76418 61367 88276 81030 26077 89760 95994 04188 42662 06824 69337 35553 19394 89154 09774 76961 32010 65784 61453 02223 40331 13501 25258 14933 14822 77162 97875 31285 88155 14998 35854 87880 31772 68937 44670 74545 57447 59905 92784 92139 43848 08150 50712 35372 88100 78544 55080 00612 82347 50904 97692 18699 15317 15300 39589 12760 98881 92366 50112 81019 19617 78619 70968 04609 15374 16765 05287 80388 76831 91013 31688 78748 74062 47390 43342 26427 08099 39052 12033 14326 87494 96596 77218 30316 29879 23373 60097 17056 88531 15799 02667 54800 03936 08671 31790 69214 80348 45477 48253 64186 87352 73707 40831 79638 86429 65171 25352 74342 82518 61304 08755 33728 00576 43484 78155 02700 87141 28345 14907 43447 36897 88084 33664 18255 44236 95778 46444 97320 79818 95697 51692 91563 92136 98614 48339 10436 34075 02116 74867 44742 14481 35923 73373 74444 74717 32194 78629 01476 90228 20841 32143 07558 97104 49846 21228 37007

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 7/6/2020.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.