Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
62351 77951 84123 50440 65741 70833 21323 16306 60745 33013 18207 00387 09308 09907 44775 73929 53941 05233 96127 32886 63033 45070 00272 74480 01166 66925 50941 98766 24426 33793 65402 35194 00713 73218 67268 94170 55058 41359 94315 43621 39933 12050 31289 10554 30565 90864 67724 07622 45244 54174 80749 84685 90643 13216 42904 05371 32124 03153 54954 48643 89054 97136 03694 35354 55114 45365 44773 79820 43618 39156 10494 66371 57818 99999 42638 50922 86221 93623 50267 87531 22900 69057 92543 79966 12809 22695 86538 58260 22091 87354 40045 80282 33394 46342 09395 58293 66181 72517 82263 10513 22046 92348 85488 37680 55023 74984 17878 24614 66901 46309 08030 66781 27534 28008 97135 21853 20156 01632 46797 86271 11692 97654 71841 96809 48070 09538 98127 57135 74538 32798 45364 89375 80967 29061 34919 10673 72175 15130 22636 34757 63231 77046 56638 98497 99770 09152 60151 13471 03308 78152 39308 42529 41551 12178 15966 01349 23709 14849 85516 85006 20809 04335 99700 19531 11007 77420 74415 38477 49898 98562 22534 84475 65835 13961 11715 35803 80234 90613 47214 57946 52891 80380 79694 80158 52294 09050 38045 97026 50935 90398 87188 95029 45621 65251 10896 04106 02789 65548 19599 74214 28818 03406 83200 76893 65338 85177 88888 31825 09550 50516 23950 58403 59529 36441 83581 52285 84546 66396 03703 86966 20373 64312 18767 40331 89598 93672 44578 46225 46940 21573 86096 71012 49558 07785 70256 15136 52366 18819 03780 39688 28343 66986 55983 17966 13849 74460 66595 12034 78932 62340 78565 74294 22647 64715 95878 74037 93365 67723 66370 49013 34084 73618 89531 81994 52745 89826 49330 02330 17543 43014 72017 12517 77240 18149 08940 39760 06473 22562 44359 12531 76076 75008 28256 62134 48383 19732 34147 49270 97546 65529 41897 15595 54846 49808 45531 60285 79003 27652 86045 41598 51495 85885 09223 03437 96863 82129 48444 26911 28029 08872 32499 06899 16605 82525 18401 53612 88207 57489 49198 19157 42768 65215 36785 49096 99851 78269 69718 59011 68958 99390 46027 36067 44846 75558 31024 65572 27840 37052 40122 82543 69140 61515 46641 48264 41142 63015 14626 51853 32742 06109 56656 36823 69655 44906 16658 52641 59724 87125 77719 31297 63234 83164 94900 88861 88222 40158 53045 52049 10793 61042 49597 09781 20432 08616 02408 89751 90313 94604 82554 59982 72614 93719 72146 55391 18832 82727 47141 29355 25091 04502 85159 30267 02456 57099 98290 03105 72247 07810 90911 15991 86350 32225 42495 11752 72530 78300 15426 84486 04742 55416 87812 81123 98448 48444 11293 27988 30924 56802 93860 82362 86576 58525 07662 09047 27249 99321 21822 81925 87546 06638 60246 10524 95134 28724 84441 91578 16058 98692 01320 85592 25056 23578 96023 18402 00869 98407 89723 07738 46556 45257 22439 14789 34804 77317 60854 20761 78239 87953 31120 28445 24745 64768 76676 88773 77770 28667 41059 52386 41642 97917 75715 46196 91878 77213 72814 74944 70502 71735 23060 47767 06353 26218 98504 29760 60400 89006 60359 18535 96050 01122 91810 45789 74468 10325 55826 03862 74884 10176 77976 97301 39906 04100 54237 19421 45834 94446 83809 53873 97972 96552 26929 01199 50941 77808 87679 30399 53989 21715 21802 55494 21308 16951 69516 37085 27341 71433 13321 08918 27101 51378 60815 29446 01476 45366 52509 58394 27549 53403 94633 58315 73904 00984 16955 21159 20943 78153 55589 19833 06196 03569 60809 84762 94636 13567 29864 05455 73988 76219 64785 57064 75045 30398 55202 51949 16977 49840 86157 16239 77647 32209 70911 91395 88922 13154 08763 60773 56985 05378 67859 01185 07647 62694 93005 59465 56661 69094 38478 54025 05035 52806 25844 01426 59341 25359 26762 67933 77034 45647 70806 46080 36755 08988 78268 56237 33653 61189 17979 73164 99692 37608 90115 77582 48965 27215 34014 32727 48007 61657 60984 85921 11106 29320 12123 95129 20616 14388 41120 80523 72271 60912 22081 01044 45496 61866 82330 55967 98721 73213 60227 11460 89690 52967 87981 52147 20777 25256 99461 57674 09300 69381 63007 04267 82826 33885 39246 91298 99492 75610 63901 92844 93314 23760 55607 34255 44496 68968 48720 93710 74750 77352 51132 28783 67602 29582 27083 28006 13707 84942 04972 87430 81163 70392 10172 12188 10821 94628 22839 43057 36596 87149 60730 08023 30787 62316 87009 98838 74380 08418 43065 72590 52366 01729 06320 78260 74054 45576 73045 08284 18381 34399 66171 75121 04223 42813 68103 12809 85715 39672 78527 03532 72553 27130 97231 29182 75316 04706 31912 47918 75772 58342 30988 95734 22194 74471 41414 13015 49672 79076 91492 96106 25422 01752 98684 73871 19105 64771 02425 09255 98133 97143 21935 25849 47988 73679 39031 59448 17526 79053 05941 34621 89299 96865 78116 66265 74860 23702 72041 86174 35079 08205 48050 94598 25456 15125 18136 36806 66432 14389 78764 04652 38701 95165 68687 63131 03524 04920 51753 01945 48041 13483 24721 12070 55584 02111 50073 87308 00987 77548 13825 50860 70902 11089 08343 06883 09109 02643 40150 17051 86831 69794 62745 02124 98044 61865 34409 68503 79789 98978 01023 59799 57488 36121 03877 33391 15253 52205 12484 61989 91201 64132 82392 60200 97764 65853 37996 36087 67005 92432 80354 67730 20926 09110 19992 04796 66786 25366 34726 95092 17406 33979 52466 36135 36489 75092 59034 51709 08930 25274 30974 93433 36126 11581 93365 67319 56292 50622 02635 85334 89769 12617 54370 41969 09343 10462 16131 15793 35552 13794 85262 96021 57000 88047 71707 34077 75672 58521 05817 20150 77242 99441 71168 84765 26389 48019 62371 25341 87109 43521 67884 57751 68026 91322 77826 92892 92706 51976 16787 38240 94967 55274 01644 24417 39197 39308 24370 56750 65660 14533 59851 91837 60812 52832 98691 39109 52614 01572 05034 87391 30842 22674 99368 56462 92402 56672 66344 73625 11640 11775 87584 75263 35657 77930 99495 33403 04622 65886 76082 07279 97079 71254 36760 19897 00266 63571 79168 59592 05426 00364 36979 06594 28115 66208 62713 84592 53520 36793 35552 37293 06770 67985 94148 29986 48247 09888 94440 76105 93899 45906 92466 88791 60553 56807 52171 57454 36229 09784 78225 49336 75449 72520 73832 36076 19552 52246 23543 45266 42007 59810 01072 37020

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 11/30/2020.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.