Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
91502 40500 46477 13380 26923 37288 71958 14402 16458 15874 19623 46139 22052 21674 59472 79837 86216 58406 86606 11450 77340 52150 29032 38200 60004 40412 80482 60143 90295 86186 58224 06727 36113 17017 85871 88360 22490 89064 01199 72967 01896 76162 88955 87556 49559 83882 38671 44781 83770 88598 27477 94499 11200 01546 27914 00342 97212 57889 40745 41270 61173 30778 52767 38138 96765 70414 19626 05259 17299 68111 73629 26966 26030 45360 56554 59174 11465 67891 77464 55939 67676 84731 95522 21030 39616 92275 27798 84481 93429 23341 82086 04159 11763 61235 14717 92326 14081 78816 13367 67202 01978 02553 04872 29525 29486 01595 88044 64116 98395 01826 91477 66439 78559 24932 56364 94167 53212 52462 44307 43741 89280 14890 70132 51936 32690 05681 59699 22418 28688 20347 32717 77315 67149 20516 10554 33769 52888 22991 49052 05509 00975 13814 96335 29405 57045 87326 75629 17036 42615 10232 93067 31249 25389 10664 70507 87726 14578 92241 03339 81539 81210 73134 43303 38721 03438 50125 06300 92822 36861 87674 05200 86477 09829 31978 07663 97961 43759 50036 18942 92761 98448 93710 89704 00129 42382 88786 48836 14653 48054 49041 61260 22813 12271 15300 10749 54546 01471 19503 07733 59810 22030 73767 22116 10145 15582 84444 41085 25233 79325 91190 51928 24467 11336 31021 49841 03506 80884 27382 70744 35843 23742 04204 49090 99365 62498 24971 00681 27915 51872 56778 30481 87858 49021 59396 65422 79638 08860 99337 12227 64346 04369 88910 40212 15280 71905 50290 89104 94505 81520 04576 01856 54421 32266 85857 82451 64320 72515 80272 78723 61953 45265 90073 90166 30089 58458 22687 00746 98082 80288 04781 36714 68425 59515 21323 49418 68324 70780 79642 23119 26251 84914 98494 07797 73511 64253 22125 76969 70804 82947 59328 10501 59785 72277 47513 02415 39631 90966 41764 93711 68600 20489 28903 30170 90595 85389 66553 45173 86725 98586 47202 67509 51869 31693 87261 54192 96239 10326 41131 48270 71940 34419 40264 61638 24536 23533 57224 82853 69607 87171 94752 09943 94319 20091 99826 08221 83981 22615 02726 93100 73607 45947 81095 37900 24485 62480 49001 06667 25730 61111 71002 11978 20856 67556 01205 97761 59330 89656 47330 47104 73143 87697 59776 15066 78363 69716 45676 86492 01707 11819 07966 58825 32096 03489 09446 49918 97222 17901 61840 30845 65109 07233 39862 83718 70674 22983 20275 84495 67294 61273 45957 10794 03363 33169 14961 74706 23857 59991 94577 80608 96899 93625 60398 07973 65316 61836 60380 19186 23206 38580 03903 92353 17500 39317 75836 79115 74521 41325 75601 87464 51552 29007 81230 89547 13393 64212 38432 54488 33927 81541 74655 06193 22682 08659 38148 06169 76393 11614 62022 61330 55563 65144 53314 56814 86029 47988 07050 13795 85522 63207 45306 72293 15229 83485 81273 98988 56357 21452 08314 20036 11697 24989 14036 78873 32181 97546 19340 19038 68451 43448 42497 91975 47416 38216 88199 89855 73821 23871 61628 03382 56800 29254 07517 04607 61449 15331 74211 54744 85381 45513 02733 36976 60291 80963 40842 14273 78520 00910 82100 12204 44615 47963 29930 26746 51892 98422 86682 57100 84000 57591 67695 63501 41482 80091 40357 50032 93339 15170 88170 72437 53590 77020 99813 70932 82836 40085 83201 28018 14826 59376 04552 51294 08011 15783 52446 81269 22115 86387 26889 24174 19692 39773 53376 09777 92692 56343 21952 74192 14022 73628 51274 67694 14108 56599 77678 87530 82457 92982 69236 35732 94222 13570 64821 01931 61763 37534 38170 71167 11209 42735 86945 56702 84022 61042 46797 57836 63556 98635 30427 42713 26625 81328 91649 56140 20060 24874 14455 52394 62277 30279 27073 53041 69834 04117 41033 29741 08997 03840 15227 12066 72301 08093 44975 20309 80114 12022 76082 23301 07198 47593 43906 21219 34271 28897 37420 53398 24572 22470 88268 31150 25423 42600 84837 95570 94787 71641 11312 00349 52837 05327 11742 19591 58515 23084 79103 80621 11094 83340 69356 21799 76743 43840 40516 75335 40086 06959 16711 75096 80769 90013 77243 89423 75019 20570 70653 78943 22206 56768 53784 79380 96409 32620 55840 09367 22976 28334 67454 03261 80087 65619 54744 68955 25316 28002 98381 70687 47196 06139 57647 36857 41776 68126 59503 92838 14190 54815 12645 18786 05215 00122 46573 32458 42837 76344 75647 97019 18809 64468 88154 53856 90217 49485 60372 80392 06043 40705 95625 72898 58724 17062 88354 54306 60717 97436 13174 07019 46061 35959 38939 30724 96941 42329 67804 25210 95247 27123 99286 98172 99139 72110 19328 98029 44611 25564 14364 71737 72048 22572 10374 47596 77796 30354 36957 43069 90717 18568 16382 97591 73757 54627 77660 30382 50507 24013 95603 23259 56763 75583 54883 28451 17091 91887 39101 01407 46392 84479 44845 58613 76457 14229 20754 60403 07537 36638 31580 18770 84902 72145 47251 30180 00404 01445 56933 33384 19039 85800 08094 92231 30510 12348 70563 03481 25790 64422 25597 29614 98685 16856 79940 56648 72393 56302 04888 76946 51072 26541 00348 97035 96397 98794 83905 70411 29126 67038 04882 55356 55662 68314 83402 97752 19614 28044 74451 38887 78362 30341 56942 48275 04616 13320 47775 81464 12984 89414 40902 62850 11526 90687 71387 93488 78326 39139 04471 83908 63048 42030 49634 11923 13500 12181 99653 05444 27199 13296 94672 50294 27930 30268 11260 23015 67310 64496 76474 48687 51352 54192 06921 83739 92024 19701 72822 23755 83815 33806 87074 36297 05295 17046 19311 18710 45680 58026 34971 80935 56391 58729 59351 53326 27621 04830 66677 19459 89892 61008 94162 73943 40624 91260 81069 05238 95691 04208 32777 03460 65988 23419 09837 93203 58992 82711 42041 91341 05325 46473 67482 89849 10314 54967 96613 63610 30558 94650 01318 03232 75486 93483 28964 72856 33924 41242 41473 92972 25652 34833 79377 48229 77971 48603 50886 20250 27265 29652 45948 45442 45561 18147 75310 97810 92094 92635 34584 96770 89868 40354 93307 39959 27218 52545 09006 61051 84377 44765 66257 12567 85031 02202 40748 73686 72888 49983 88347 83064 13238 48491 59156 96638 19513 13674 36580 70445 04855 62360 01387 68431 58674 82567 20770 95266 48213 28818 62412 54154 45109 42453 33545 29647 76955 96938 45015 95457 03866

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 9/30/2020.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.