Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
87536 16460 26410 50143 86946 46280 77794 98455 59612 00476 23628 60685 98726 30715 15162 64330 78051 46964 28746 61592 97227 81552 73638 05945 52083 78237 24820 53693 29957 06262 80808 90536 29999 99422 46469 83131 08490 20127 40825 55653 49151 48459 29874 91360 58459 96243 84400 59156 85956 46100 62781 65149 69563 15519 18809 29219 05893 45910 34496 86577 45562 16674 77890 14329 13502 84264 85888 83038 54276 46244 72044 33285 02387 30353 59387 77235 77592 08572 38232 25198 05214 36179 48990 37188 61456 15818 89982 99491 43711 86556 50252 26225 65878 37951 67379 85901 78670 49111 10292 52989 14931 52756 87076 84477 59944 24284 77792 21436 46749 95828 92285 15580 76449 95326 52996 80832 63529 10575 02780 69884 06163 78301 37711 75759 81531 98218 64901 58376 66128 72088 85307 96109 81079 67790 01547 62353 62447 08375 50713 27086 56555 86136 62181 83429 40287 01664 40426 99209 66408 27915 72830 93525 33874 99270 62500 38307 83147 25598 86079 84879 16502 31320 76557 15523 43345 19468 31081 20039 50522 60753 43776 97312 97636 07621 63548 81868 37352 33320 76903 95442 60717 95964 15755 23538 67469 27588 90243 16992 61349 48218 46540 18535 70415 04931 49667 14356 92354 35917 91304 10660 64793 59541 22605 35238 60616 88407 12009 64023 08269 68419 28053 72656 37082 42845 47182 13047 47573 41379 86565 14940 06763 94202 61908 12470 68493 71048 70263 95733 18731 45262 97840 87340 45885 82866 52826 43989 36120 56620 23190 83019 93665 85085 59500 33977 86128 96684 82734 15179 14810 18768 17092 35276 10014 91676 47809 19808 51362 07794 03969 62778 13101 75627 66315 03205 34424 08852 00064 26690 14774 40385 12716 91980 34163 61443 36871 82529 98479 85607 38037 83058 09806 37882 47447 81124 61727 68763 19866 93675 59645 93296 16410 18618 66090 55138 12353 11379 71034 15624 29943 86467 87202 67826 96212 44033 70388 75618 25790 21437 64761 37737 28717 69809 73186 76844 43256 55610 52527 53590 93706 87195 33969 05677 73212 66377 68322 11919 51580 64988 96340 81307 08089 26443 44030 67070 89302 92301 42966 05736 91881 53827 75599 81200 70397 28557 45574 13779 70145 61858 73039 74281 84953 53493 14957 23063 39999 09179 10422 74096 99620 17157 50967 84026 00126 49745 75882 66240 07612 89910 92521 29922 00770 82824 21618 44122 78703 12427 67597 26814 93737 02995 13888 58962 09232 45694 43236 23579 82397 50151 83015 69793 72099 21010 75541 01907 71680 59497 73384 93462 66767 89985 59679 26300 18082 11552 93442 54626 69261 74545 79878 94072 79659 82144 65698 35756 82169 16924 59429 85350 66030 92416 76726 27136 84641 29672 10686 13073 88376 58825 27160 76860 82391 45651 85065 72995 09442 43136 81696 40838 57694 68034 23043 93678 93535 02431 19096 32790 19387 20307 04163 86500 56523 39101 82181 74249 52872 96270 97027 95651 15838 50852 27835 44561 70110 10033 09303 48132 40475 80702 77007 30884 59628 46020 37717 03758 00989 66980 64705 78188 36513 08968 18062 05156 19501 93329 90003 39258 92416 73926 75190 27765 19692 38705 66035 24688 45549 36255 73018 29837 76805 27374 69998 52887 90688 61629 64525 02437 67648 78917 93152 00076 49171 36033 41750 19441 20590 58227 90819 50287 18899 15768 85799 87540 65562 25508 32384 45367 24333 77443 16836 96234 84059 86278 51295 34973 66500 67984 44091 67839 59137 41367 95060 26577 72987 54626 15854 07482 25414 36918 75253 35462 47945 74918 69479 53101 19074 14386 17508 34722 22086 86722 81382 25449 27860 60538 11522 05268 02687 18212 17041 78090 41079 57455 61055 85818 23584 17873 80998 47402 99599 32528 33930 22907 95179 04504 66855 02573 45853 08464 12031 20880 54434 17217 07280 95606 73834 53279 41305 91895 14875 65436 24000 11315 79100 30305 81762 05923 16589 78897 77807 17327 08769 48182 57475 40748 76227 57649 18553 14082 11523 10867 06578 31964 37002 22053 35156 84831 87606 67628 31269 22980 18689 62783 05593 45638 38825 63043 47807 15018 67626 90825 46905 95382 18549 87006 36514 17109 06714 87479 65197 65751 81710 24721 91775 96100 85414 54354 05634 71247 34801 06707 72038 26649 29754 63377 02444 59185 85880 58793 49812 41226 92320 06781 28919 59692 94565 52123 61670 80116 02264 47118 47412 35707 22038 53150 58246 41413 15297 67247 59340 32982 81044 73643 54238 31025 63695 20342 55180 30081 85888 20682 78405 12674 06297 79891 64473 88382 02441 46659 23570 57893 78502 89691 05824 02074 98133 99279 96617 96027 42274 13855 36898 48158 91959 71560 68494 64235 36137 86805 04424 36450 04476 51833 24210 57487 25181 63279 94192 59576 07802 73739 12838 78566 51054 68325 81057 42976 75620 66233 97512 88068 81970 47304 78934 94902 33173 03584 05430 54402 62705 15890 90802 56418 07268 55371 77852 03788 64596 10070 58701 51401 76274 36487 20099 70259 35544 36143 13736 36540 20123 57138 51557 45661 50012 20719 26072 51339 70309 72839 55672 29653 59024 60722 54938 68110 59889 34423 29955 79704 40170 73390 98625 41980 73481 38030 35978 61098 47598 46270 44487 60891 97268 75117 49376 96931 62023 87224 18938 95592 68993 82451 09845 18111 40719 74426 37459 49650 27964 92112 71146 13359 67525 06363 54589 09440 65049 81492 51101 79207 02841 51832 13933 94152 72679 23297 81594 70002 33629 99946 98157 05788 94850 35544 58573 47902 23415 10128 78988 79163 77118 31564 92048 32878 62288 62114 67218 31904 16601 69998 56091 52712 16896 05954 62701 14449 11982 04802 38837 93001 80454 12008 04353 60052 13505 35244 92482 47152 22737 20951 20151 34776 72976 55903 83288 66386 40082 93769 77138 87498 93765 06673 41575 09737 05391 61760 31416 99908 80802 22757 11729 94051 18125 76536 78151 36508 90583 84675 02197 43984 54310 60021 01573 94612 81163 68255 35489 42009 16535 54451 24972 54347 62163 94641 98177 78408 83948 72376 60701 28653 44763 80288 90896 01277 62265 46655 60177 13281 91708 86962 78343 66525 33759 80464 63879 36796 67305 71745 39277 87871 07269 97288 51346 10576 87422 37029 16522 86850 68195 90926 91183 78808 69491 80518 66962 42806 28500 75490 91056 68497 82507 45231 11544 42898 76709 35403 47693 39455 97025 69498 85277 32097 27910 75402 96885 34309 35166 36960 87235 63187 73754 70536

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 4/3/2020.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.