Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
51227 40126 04942 84707 16525 26484 24114 17450 72519 20829 79091 63480 26541 07421 98346 93630 97347 36239 13184 70234 29180 80802 84305 67444 30837 20974 53364 16540 39725 50780 19538 76245 10929 11216 41086 28033 31271 48066 61909 96448 58375 94709 63117 94411 84726 79936 39589 93533 26739 60760 01537 19432 38812 80228 01066 72041 52398 50237 83740 70920 40061 59342 65139 25574 04542 05573 32429 30759 92819 54242 70919 86800 35172 20761 15624 44897 09244 78452 27829 77445 29104 91359 96653 73343 59308 72061 65607 58303 53964 64485 84160 40169 20792 51718 84300 79225 10191 88821 82099 83510 29294 60638 04270 29128 81037 64611 39738 05564 28220 18594 16192 85991 82568 93662 01657 22590 18793 71926 31050 66855 13659 29343 57748 14910 10044 43533 30145 77822 06001 26586 93218 76910 68820 82878 15087 64060 74095 91884 38583 67036 69779 15988 57801 59796 65255 33295 19673 57799 45392 95448 50522 38322 09610 10437 07631 85770 35942 50411 55800 61991 70097 84493 68912 01585 39524 36589 56495 32219 92470 68205 15284 19940 62046 86257 05783 39484 55292 75882 53827 69595 67231 58253 77148 13329 19940 73391 36933 43373 26609 87978 14389 72355 80604 28166 12307 48158 69529 37394 81619 74230 14287 59199 72967 54898 33146 45027 13261 65682 30801 87048 07243 48603 12433 75965 64051 32501 22775 83831 48778 78344 10173 71858 59038 49541 15648 23230 26527 07257 86961 00919 43584 30719 17671 30490 14757 62538 11204 07923 33362 79013 69910 32417 83048 85448 09126 64209 64358 36463 96240 07381 46293 81308 14757 17676 42872 34174 53353 35312 14697 69504 19944 42788 95514 42311 80748 47705 43777 33483 24346 90570 19209 20103 50742 77616 84365 70754 85432 38610 31193 65840 18461 09666 32601 42891 68486 41058 19015 66877 71843 30035 79942 25526 96604 78628 90536 49630 81643 76467 63155 58359 00695 08593 23929 29576 51423 88270 14319 95148 69477 14794 17682 61257 67560 56311 10829 53716 99486 57629 40593 88277 49245 73024 25388 65948 45067 24062 81773 93301 98479 82402 76014 27790 68377 77617 00646 48059 50077 30002 76037 49254 89387 08384 76949 63340 21665 12942 84100 04410 35882 83013 60730 38998 63683 29905 54158 81394 93455 94715 22350 13951 09384 31135 85479 32403 55517 13268 02485 16175 24830 68438 72642 23696 73286 35007 62119 12712 58900 45184 55540 85597 05798 32835 32552 59666 93283 66303 69379 62489 69896 06214 65394 52202 92480 88291 94675 62820 90240 31169 82571 74550 53807 69204 07260 09101 49300 10288 26317 49999 57389 18660 28275 87902 37359 22721 09183 90905 16168 47842 74175 99859 02513 74182 64029 48681 25894 19495 06729 09669 00671 46946 94029 63808 15132 97923 83015 96092 45552 49850 22669 15827 95259 98997 05428 01950 58691 68295 43749 73340 10464 40148 71671 84128 19433 14245 71379 44013 87750 90371 24763 63573 14935 76224 89984 24576 86931 20222 03033 75295 90169 69320 04299 50819 50633 51819 90125 18366 97919 85183 89374 47596 54297 08846 64993 05921 48778 42027 40570 78823 56174 66545 51904 15158 61157 34628 23561 97477 47328 01724 70439 37335 11275 84321 24333 95602 01637 42752 85491 27776 83167 89010 99184 54299 25791 19560 57264 55864 18676 73155 24727 93734 09290 13643 91277 55048 67462 37783 47885 23138 74450 08056 88358 72837 36996 10481 35894 90799 26397 37420 94651 20803 42560 95399 26304 34072 03071 37916 51611 24582 57251 23252 76975 29374 25223 97288 46005 73869 61975 01313 16081 42181 46419 04842 59914 72426 95456 63422 92110 77037 03036 01448 20730 88074 04224 19978 23858 27543 64262 29538 51158 02699 92627 07944 50439 26366 82099 83106 19216 62246 72822 40845 81275 95234 41363 57707 88233 26727 14779 58770 46103 94939 09679 00462 66853 20213 96284 78369 44972 75334 87489 60052 59030 80840 52930 42855 98243 25335 58042 36721 14033 10804 28126 72003 96590 22921 37405 32276 76440 26365 23093 12151 51000 85132 24453 00086 36145 07846 46864 86200 42770 18072 50877 95083 78353 49630 66284 43612 73513 66907 31178 23760 33581 10167 56013 10412 15153 65866 12671 94175 27659 61965 48520 39189 59925 88239 25482 65946 31731 41596 84089 59093 70378 96381 32551 00255 12250 99695 60816 25838 29374 91707 79631 09846 80985 50961 84608 71697 90087 64695 45285 09027 45016 24151 19187 55509 26003 44887 90890 63665 56736 12089 36085 12676 80921 50886 10637 41194 63848 21660 64649 05158 18951 40359 81526 60606 59372 23810 42036 71483 74519 60033 13373 42458 31636 03550 63218 76737 02360 95700 98804 58871 14284 09951 30977 62571 27523 22213 63258 83524 36271 06149 05909 97199 95369 53488 14989 41663 71864 19340 56422 25394 21573 92505 95059 60094 90644 90785 08738 18497 42120 81303 27347 17186 07502 25806 96889 24405 63309 50986 68541 92871 32644 43787 12721 17584 11753 71721 58144 18643 21588 28176 55892 49057 84374 02735 68470 27558 25164 76483 83872 96414 98408 42320 54645 04237 39513 50279 61946 13803 41406 77830 04610 34860 56093 25200 13209 81939 21227 35680 89116 57171 11669 40942 68569 58096 16046 31349 11728 10477 38322 51267 16746 26113 24350 19378 58823 85648 13444 73995 54274 46389 14936 43371 49590 75115 09741 41012 35499 05888 76917 85992 86031 22872 45230 48265 22579 68136 69716 18972 02961 74475 33242 05763 35484 23219 73070 53101 18006 27044 32419 87579 01998 37789 37027 88232 81606 79261 96715 81848 07716 05058 31948 63282 27014 81370 25399 40767 46047 94801 98508 06229 20292 85177 13050 30596 68211 03358 97693 84114 10319 94051 99562 81657 33242 03627 60802 53040 78784 12925 20139 38334 57985 95072 39445 08175 90188 98292 55299 09076 67098 53718 55547 33745 41847 08208 80871 16391 43053 82153 51345 53042 13887 52294 17999 46853 76132 59528 39386 78420 19247 41730 83138 01095 14431 91556 52533 61294 53680 39261 38055 43815 13858 60511 93959 42144 45750 09193 39830 53773 88134 75231 87150 00510 06834 67396 90856 73791 58792 21118 25905 04995 81122 31301 88837 60754 05178 10134 24336 63267 95615 69903 76793 35610 14450 30804 66867 72052 10127 53757 93051 33367 31579 98217 58233 67143 67287 04984 21256 53098 09347 04022 73484 73392 42532 47265 40362 07939 58352 66432 07981 54717

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 4/5/2020.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.