Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

• Enter a value in each of the first three text boxes.
• Indicate whether duplicate entries are allowed in the table.
• Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

 How many random numbers? Minimum value Maximum value Allow duplicate entries True False Seed (optional)

Random Number Table

1000 Random Numbers
93072 38290 08100 76032 58899 94059 06053 11397 90133 13367 34090 94399 64786 43437 06794 12543 26588 34325 30248 78825 42806 65480 22356 70789 87055 97308 58146 94594 47110 47735 40092 74074 57717 93770 93419 64802 58410 98064 86419 93151 76318 60478 75763 20357 33981 94641 76814 31583 82163 29514 58939 49980 57662 35953 65820 75748 66123 78269 60769 50203 89852 90797 97039 44836 20629 79449 13137 75374 17516 48286 53137 40847 89674 51072 11991 87649 04177 67843 05844 98597 18817 06466 67341 06999 39924 29204 65949 35712 05176 04275 53259 61208 91408 82419 33307 02633 47432 98454 57880 35872 51841 97848 46833 32610 95829 88271 33400 24398 90999 16166 34507 91709 02175 68305 46081 78008 05219 98358 63368 28807 69839 78450 26243 55734 67402 75725 89521 25592 03751 53910 18272 74422 77011 99876 08132 46566 60407 75202 30615 58730 10072 92736 03429 89045 97863 18158 85782 91130 69171 96541 98702 33155 25737 03919 70345 61904 33460 23840 06307 91836 55212 48940 84939 19149 08652 07495 77658 60840 49033 14990 94261 18771 77021 50678 53234 68730 71504 59148 77070 74492 47406 76877 12577 26884 38496 83806 76190 07846 05206 79891 24289 79492 67440 86671 48505 98177 62386 73830 96037 53555 27331 10759 14962 32644 07471 43118 24549 08888 88724 94400 10570 56219 55547 92492 45616 88118 73740 21238 34403 21683 98266 97001 84092 66684 06060 70226 99595 39632 53841 52005 03893 02838 60927 65634 83343 28476 17046 23179 57997 87645 15149 27040 76907 64434 09221 96510 38445 94982 97095 19338 35610 31540 28264 28295 26341 31537 36696 02732 28835 71639 98640 95147 41851 86814 15446 82741 90031 34390 21373 43988 94204 83126 16403 60193 66706 27264 24052 42056 31690 25600 74185 81233 70434 65543 10826 26899 91662 52176 24973 87314 26849 22323 12409 56379 50538 83606 56513 65204 25649 78513 36076 58669 73795 73455 58111 96984 70592 72833 15665 82255 65974 58098 70635 10046 29502 51816 61576 45938 20679 06727 36518 27095 84263 19809 10773 88827 70576 71342 49753 16149 80822 88968 76780 20346 37394 36758 05897 40537 79190 29266 99685 70233 81923 70602 52070 08903 03438 18485 96140 38536 54018 73313 36953 25202 91701 92221 09356 45616 42593 28144 60791 38700 46177 93882 59110 82146 25628 51159 25388 93978 83125 24689 91738 59114 20163 41235 84116 80929 82867 93675 30142 57819 32302 30061 91906 84758 39789 67685 23784 79870 07212 32139 55251 35983 12337 21378 98690 97193 79120 94784 82209 60432 73021 87226 07448 02024 21317 48123 32398 29250 58414 05509 79208 56911 96158 55095 67000 08890 19150 74326 69682 44716 05058 61451 98759 11122 69927 99583 11147 18612 38496 45758 41983 43024 39505 45002 62440 52087 26012 69391 62539 56989 20704 82115 58962 88938 86210 26540 27861 00722 20412 40268 62675 93277 76757 94206 56941 67242 09574 56621 12105 99528 44380 82205 70336 44878 73200 26142 72339 62428 74872 83163 40166 67272 60363 51616 85029 07024 43084 22521 40113 63380 34197 93638 18387 78679 62934 08528 95420 07469 21901 20616 17188 93066 37399 82251 32894 69120 64732 58772 52771 86172 08521 67566 30904 63224 68015 42137 73035 64295 07404 21163 69382 99987 51133 62559 52444 54047 04213 82543 79822 34927 97533 19695 42023 52351 58176 24021 95280 18874 04727 71015 19360 76445 67586 00724 00376 47970 34285 81804 38605 13876 19795 00591 81292 13670 61842 75157 80471 72506 41219 94375 75771 52742 27097 81981 02234 30509 47337 85639 23121 97266 83808 90998 87731 86371 92691 60761 14209 24635 49798 98742 97363 08891 20882 38930 41469 07553 56951 59556 18092 87180 14578 22149 48894 64038 01216 35601 13445 80663 45507 45231 82040 07421 92601 46846 73509 69075 24460 25803 38028 96344 05179 21075 64934 02466 51291 14306 15538 84761 27085 43883 80934 51196 64915 43990 64814 71941 10515 08678 91283 55939 93311 80921 37664 52464 21731 66682 92319 77683 03520 73976 37457 66222 91053 76928 56944 47725 51646 04843 69123 48420 62867 56261 84620 17677 32854 38024 89158 79575 45621 29339 51371 09463 31373 70835 55617 35519 61823 78633 59787 65319 70495 83403 78121 37393 98046 94427 89017 97794 62572 88665 67850 01653 54925 24816 44775 39749 59021 82376 87549 90066 97157 25708 09336 94358 00320 93098 01524 59712 03501 10823 91537 85108 66010 32210 25645 12984 16781 01696 76779 05797 24695 43899 77343 47587 93881 77672 77026 70537 84040 55170 25613 06538 55748 25909 80801 63751 40775 25835 41010 28168 37392 91378 03194 90176 30690 98521 45655 96119 37885 26861 35855 24860 78638 48670 63228 89346 70362 42956 96996 63165 48537 34531 68975 32117 12021 58069 81393 70766 93364 47170 39700 44011 54120 48421 10383 33647 05160 60463 03775 89922 51982 98047 81868 08108 65029 81101 91130 30055 74993 48791 20311 70760 93136 98584 83259 69926 56599 50311 26735 68527 98711 35228 63220 10367 44309 10079 28730 68646 30045 96160 65631 97520 49698 43378 30446 08665 24490 19318 26673 72839 98398 23303 62595 46445 58463 25455 34092 23093 80107 30762 32454 10161 97443 68136 77193 30361 98586 04477 73859 48299 45970 83736 96846 22036 21656 90979 97212 79657 97648 41447 35483 20824 31202 94616 39474 43346 85143 93269 87097 94741 73172 27546 14173 48792 30183 24017 47246 07118 07574 59738 61395 25729 93560 01318 63048 66597 58482 68976 97791 74208 25127 25611 83184 77133 64031 90857 66574 14588 13799 80149 07901 87995 26417 68787 87518 37545 37557 80996 39002 43762 61900 03989 06963 54064 13440 27029 29859 34326 50802 05494 47809 45444 47552 49937 35403 44893 87509 40149 59517 13296 85059 64222 62127 05981 30467 82612 68115 29545 60190 17199 18088 43419 52187 65354 26189 86426 46235 38995 62906 28349 89240 28657 62890 46489 05548 92549 57762 27228 92261 70618 33931 92595 39546 23613 15401 51823 75948 97145 71587 77917 38706 10751 50128 09213 69061 71958 34696 75942 32570 15341 27813 51792 64421 66591 58659 30469 39741 31572 15888 27264 68913 10389 05439 05609 17886 36446 33347 28646 53485 40510 13560 35786 13732 39777 00747 44270 03147 51926 48111 75736 13070 34192 90206 07778 66970 47420 50743 50509 90755 45131 75406 48124 08090 87586 89667 05464 60703 80846

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 5/29/2022.

Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

• The quantity of random numbers desired.
• The maximum and minimum values of random numbers in the list.
• Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems

1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

• They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
• Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
• Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
• And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the treatment indicated by the first entry to volunteer number 1, the treatment indicated by the second entry to volunteer number 2, and so on.

Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

Solution:

This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

• Enter 10 in the text box labeled "How many random numbers?".
• Set the minimum value equal to 1 and the maximum value equal to 2.
• Set the "Allow duplicate entries" dropdown box equal to "True".
• Set the Seed value equal to 1.

Then, we hit the Calculate button. This produces the Random Number Table shown below.

10 Random Numbers
2 2 2 1 1 2 2 1 1 1

From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

Solution:

We input the following settings in the Random Number Generator:

• We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
• Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
• Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.