Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
52710 62972 04520 31626 88805 20533 59302 09882 51229 66684 45581 01853 47898 83926 97101 62550 45031 79858 72318 72863 31206 94989 30952 09873 06430 35551 35561 42166 96198 31310 78093 50142 90555 18382 31454 71333 08159 47040 26071 70710 85344 14532 51451 36000 90184 22890 82747 97994 61550 61745 32320 75864 73180 16137 26297 47472 22736 99329 06141 44684 45869 10619 55206 73684 55280 18152 50306 60283 04784 66735 38273 20235 78371 10646 37521 54546 04271 71449 64610 69791 94012 20805 85804 23420 06487 88286 93639 94079 37016 94186 08483 76915 31404 07335 05098 03891 25010 27908 64203 89102 06805 95244 49035 99081 08434 20652 06917 48117 18285 45228 95812 18565 20541 22663 35894 06157 59252 27061 86103 90320 27394 85748 45713 29482 80928 37083 80893 81389 77870 13274 76268 48414 42345 48192 11482 47874 53659 10175 62763 07338 60350 59851 29481 84941 19262 32944 85715 14700 59600 48088 56814 76820 71995 39638 20956 93012 22566 15488 35717 46801 91984 39876 89627 28844 39532 41202 78739 07238 92169 44840 08184 22832 58593 30945 18741 09546 68301 17273 38394 39674 35656 66990 58897 94204 48945 21483 37337 58128 84444 58175 22694 40753 45479 73338 07405 21017 26489 89902 03929 17798 02090 90270 46305 85227 41137 74133 16716 33002 45782 41274 97053 71703 15545 99393 45477 83097 36369 96906 97980 15456 94686 80770 94949 03871 16478 79285 32728 15559 31341 09915 40180 20179 61548 12093 80251 85145 36108 05040 76532 95937 29831 70574 64819 01413 27393 60922 69679 84123 12392 31534 06011 55621 81417 98897 05607 76778 83107 23343 68719 03093 82214 16866 40615 55007 48667 75932 13148 13213 71630 39293 51314 38974 98572 70796 44817 19428 99323 67201 84628 37908 55138 90991 64554 69248 72763 28181 07794 00101 23491 71136 18504 74246 07233 26381 58360 62905 41572 47413 48120 60055 75830 92515 94187 02738 30131 07566 40170 16374 59461 33857 43450 85077 42733 40902 76736 46962 96847 84247 54634 14463 15755 88289 85208 19642 34522 54084 46539 84501 18387 92160 88292 16297 76831 80331 58276 27855 02631 46509 54006 82876 35932 76514 99268 66255 53301 46892 45680 79388 81796 82721 99252 60491 38024 40428 71956 29906 92206 15601 58278 60417 57240 75799 36789 72563 02759 18368 96705 54949 94200 53250 89448 09559 56861 10797 05208 22066 64968 74586 74511 57151 55734 39226 94774 78808 68423 93177 81872 95663 08411 26556 46701 31280 36253 63955 96736 19479 81738 22249 62600 24646 82960 93413 49621 87047 50373 52331 14396 93136 55859 89609 66356 70876 46787 69389 94324 10041 85077 12161 18083 07538 11262 02575 64934 37714 33552 22252 71259 47669 41895 07600 09086 77571 47038 32625 37650 05966 44593 16741 79956 20091 04098 57586 24338 11187 83078 88835 51028 94814 66110 63006 83713 56157 28883 59282 66101 20344 27263 16316 63482 47759 11353 90046 89288 54348 64558 36509 56662 56940 67647 19652 55012 43553 87811 44143 51582 68711 92734 13187 18009 73752 89648 11336 81887 32143 89400 12303 03328 19796 95509 11771 76530 10372 18238 85211 56331 95603 13646 70691 09779 30595 47658 76688 92691 04150 85123 14903 51215 34071 03880 58072 48394 87479 33817 22777 15729 26123 20937 77262 29740 76694 16417 74243 13528 26136 90675 08722 63340 41960 72426 00796 00128 17556 12752 03476 46117 42505 74158 35493 26360 97894 44639 39114 95308 76622 76740 62953 88366 28721 51619 69784 98461 31663 68111 69357 77601 85673 56788 76201 63439 34044 19024 92449 30834 08447 91054 15640 68415 99245 33042 71537 80143 50803 43138 71938 11874 81805 96543 97489 02922 30562 09572 05496 62617 25329 28716 62737 71875 79611 44703 03276 09754 12482 31564 11275 05021 93895 10689 28805 12709 14993 39899 88660 15688 83424 27501 72169 51219 43653 71351 92010 62521 22272 22921 00020 75332 98315 76357 20009 99474 98572 82545 05570 55410 17896 88171 22898 25814 64522 99783 58595 32126 30375 72856 52487 36122 86382 25853 55433 66468 02791 79289 12142 70290 94474 19790 68983 89732 91248 89160 06797 63523 33183 98439 98709 53532 90914 66970 92945 96339 10956 86459 20637 79791 86015 10035 28643 44568 50302 66319 37354 10744 99844 98481 23509 29352 37795 28305 28010 58942 44753 45248 88727 67147 74068 20510 98318 57245 72159 46087 87039 19720 23820 98843 30555 08827 22540 29564 82753 44151 65809 77025 33557 37174 75437 07054 91737 42833 42859 76590 92725 36086 99453 22748 31423 13471 11853 76882 20022 19673 02256 03647 70806 99083 93740 65060 03973 72360 80573 09566 80442 37997 23528 86095 59667 98882 70195 83131 82450 13859 00291 92770 78753 74289 95975 99783 00512 05621 37162 95681 79445 93942 21831 17774 09871 37552 11340 13235 56518 23515 00740 28166 87335 29232 14084 21655 31309 48994 24743 04839 61273 45553 00716 04971 01720 26678 74944 54480 61616 46720 40621 05032 92213 33178 71508 66593 69859 38252 67246 71494 03813 15418 23665 63491 69058 20978 28102 11828 64109 40634 79706 50301 93832 41041 34759 41318 77251 46375 76983 64963 80363 39895 12854 33059 73951 90503 91913 28229 16395 04309 52083 67960 61485 01192 89975 93664 91234 16363 56206 84741 73691 26927 75709 97643 45751 03448 93046 29935 20970 86508 42719 09357 22376 88271 44486 07889 40283 19045 23671 80808 15103 38848 56475 30759 45157 33963 40293 96810 19490 18510 89023 68518 75680 60999 53377 24990 82655 35899 66200 98948 48502 00200 12776 65788 53280 94971 26143 57645 06835 71928 07406 02455 31610 44993 71048 88016 70456 66857 15245 51055 19450 30545 17176 91284 85702 95973 53335 10467 70170 41519 44848 76481 75473 40576 27780 12379 38701 63121 48449 10452 89232 02276 83744 71293 31539 25869 86427 67857 53005 52998 55456 34524 56739 55592 31291 81165 19380 84977 16209 32199 73920 23433 19614 90660 17507 60762 28354 27256 44264 95847 02030 94437 03099 63215 93309 65449 80516 84602 93237 98405 08431 45510 01551 25342 96982 96777 21994 66285 92341 81133 82622 68310 59530 84766 81123 69609 90230 13883 55125 88545 35594 96273 77510 37723 64060 07870 76727 63048 44166 24316 82102 07786 52357 97520 94155 01633 05804 57225 79908 74769 20209 37568 93200 96927 92626 28643 20000 41453 09266 53063 48717

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 5/16/2021.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.