Random Number Generator

Use the Random Number Generator to create a list of random numbers, based on your specifications. The numbers you generate appear in the Random Number Table.

For help in using the Random Number Generator, read the Frequently-Asked Questions or review the Sample Problems.

  • Enter a value in each of the first three text boxes.
  • Indicate whether duplicate entries are allowed in the table.
  • Click the Calculate button to create a table of random numbers.

Note: The seed value is optional. Leave it blank to generate a new set of numbers. Use it to repeat a previously-generated set of numbers.

How many random numbers?
Minimum value
Maximum value
Allow duplicate entries
Seed (optional)

Random Number Table



1000 Random Numbers
06631 60164 04831 48778 01843 31681 43822 96186 91480 92188 99042 45295 24840 75043 26675 58808 20069 07057 02532 40538 71972 85063 92367 24477 84828 77475 47186 88853 30202 50852 23563 95196 29753 21460 28950 52398 63054 31835 91992 05778 00400 52343 57835 51143 60618 07747 08445 73850 93887 28766 07913 12871 89543 28637 72775 49853 08897 04683 67319 23180 43043 64868 23899 67037 95674 79363 88250 75475 90892 57111 89795 91468 06024 47386 36965 20979 29429 66355 37504 72022 43316 48643 43788 18725 31553 23897 23130 90390 12482 18341 53102 85558 96729 81349 41838 11071 70017 36997 73355 46136 00981 60635 77858 31382 73976 80441 27057 82930 46896 03991 54479 31450 33980 69815 00780 86224 13627 23966 84056 24212 61209 21575 95159 04113 06885 53421 18005 05423 18408 97488 74891 92504 08945 95530 96804 03645 69884 54634 18736 65120 28646 73780 99994 30256 31504 95406 69516 43493 51389 81969 96179 29446 20703 17509 84116 06969 89135 34209 93024 28216 06472 63960 83483 42706 30411 14923 87259 86382 59370 73090 02627 95675 90304 28848 14674 46568 01514 28541 40620 18658 60464 51032 00123 84216 56588 09268 10597 22253 59105 76837 07521 57578 99834 39538 89755 24866 81002 71937 89848 57717 08060 38933 69354 02718 47493 22319 39144 58510 09634 72344 04717 39844 56478 84280 36513 66648 34489 99977 65227 78088 32420 34432 02121 71631 64119 27348 84333 67108 76345 19699 45196 95775 81579 55289 09544 14376 15839 07318 14029 44207 21490 29942 52432 35175 55055 34837 45974 54865 20033 92761 38632 02600 24705 60117 17447 48502 64951 30515 57842 97559 32063 11333 93927 78683 45553 25283 13820 58773 10968 36970 79954 81783 02706 04458 74390 32776 71821 55828 69132 26993 78842 90746 21436 23913 51584 07018 94127 66315 67957 52163 00906 44343 63782 99964 76667 84563 65605 52039 72809 64035 48504 64401 77544 49365 18907 99019 61217 60773 22400 00380 46611 61158 76544 97055 04265 70154 28683 28260 72784 03196 38760 95417 04151 35584 87128 38717 34041 91543 07362 38684 77134 58286 44073 42736 47424 25076 35719 16748 03536 47291 22418 21616 19036 35484 78762 14815 77743 69446 71627 76968 94043 37269 42986 63403 58202 99409 17724 80717 06674 77746 36447 88340 17421 69650 13298 25098 30219 87042 18765 60771 91974 20454 87499 72661 27033 28096 51122 47150 32496 49915 96040 06267 98530 46660 46260 59245 53683 63942 71196 79089 35191 21298 18487 04135 84295 26255 71806 64614 66555 13388 33673 34214 17155 08387 33269 06641 11226 17119 59248 97185 59148 39686 17548 69281 26870 09492 14207 86068 81220 57307 63170 86958 60216 00323 19106 89192 68381 56223 35221 14408 97055 82239 46065 40200 69704 39216 75352 76680 12240 80678 68766 68046 48324 66883 51776 19136 19687 03893 12451 46998 31437 07631 09269 57449 22375 92948 03929 46637 60304 87681 19168 27606 62345 71720 21568 81855 40247 41066 29374 35905 70700 96898 45300 62857 90650 59632 14349 08957 17607 07985 06619 45160 94961 43038 25119 43687 62293 77295 38581 79595 50689 48753 39272 57332 03050 59955 25807 62304 19407 42061 10959 37438 27232 43905 54476 84743 76750 46058 20891 91869 61254 99895 62334 83678 62415 91652 26345 98798 20595 31492 88688 91190 30161 67564 11159 56711 59796 25071 24405 84672 97811 70327 35732 34407 22460 99822 61919 36829 97250 54286 87028 20997 91254 57748 45223 65677 24424 81600 28573 75905 37905 33662 19873 84548 89345 72240 50453 78868 73206 45191 82989 52084 66083 53988 19319 79934 97009 42776 33253 22240 42774 12440 28385 49465 48231 59667 20909 94283 71615 41006 47426 28135 54850 61930 97762 62794 18865 90904 72779 76929 83906 98442 67184 67665 14848 21169 77345 27147 91505 50891 34104 44101 03947 48647 60587 30400 72811 83779 55018 72620 94611 97994 98530 08611 12053 94423 87981 29052 09348 51683 93762 04018 32522 62947 42613 34540 34731 99996 25434 29169 46572 02292 30096 05538 71395 91030 99258 16925 05618 08209 13174 03814 84037 80691 97510 70460 50140 09263 56154 86449 51417 82702 29028 13261 59677 16832 74903 55834 16357 18594 79212 39125 02835 75104 86856 09675 35742 67714 60024 62166 87278 11081 61004 90989 30519 17221 59991 66806 09735 84578 67905 38107 35698 12084 94201 57781 05998 38222 29679 34671 50352 05087 54303 10141 00919 47452 70006 59637 87614 06826 58510 19248 58415 70520 64131 37271 24682 35709 01598 50773 31465 98491 88861 87154 52817 67956 04906 90705 12109 05242 72565 74178 27339 87601 66332 95342 81450 97461 45174 58549 17635 36489 10340 41295 59655 64652 88182 45784 57151 64279 37956 75488 55953 29128 84646 36713 93397 78442 76768 65158 18634 96016 69186 77479 37945 94260 30925 47852 85052 03257 77982 09537 16431 84829 31141 81434 31623 71601 98780 19654 18550 31058 84691 94075 23825 54613 20885 89910 48064 71667 25412 34263 66200 88671 85167 47699 72794 53190 63706 20797 52350 42963 34058 15724 74625 79971 36536 92788 14943 69492 61551 62004 99505 64170 57426 59659 75706 53072 63203 49870 07443 75757 66464 51148 95430 61330 86134 87962 22511 92515 80301 67302 23970 94706 79025 80237 82845 50040 42150 28483 50241 36451 42120 75962 90641 91740 71787 25365 52221 02630 77226 19717 62159 18835 15548 68935 46951 92120 37711 01395 77722 40360 96335 40491 40536 36610 78509 06200 31714 23160 63610 41644 78141 50602 06112 64651 82582 41892 43399 44318 93994 81411 28577 02577 02837 29029 88289 40751 61387 59164 05524 91121 29050 24851 27431 93489 42673 46800 98134 96738 11857 27457 16539 85396 39268 90071 19151 31196 65954 42753 87886 69644 41651 67541 82882 01575 20102 34461 00312 19720 79363 40588 55197 60266 67122 74113 89217 79422 71007 03401 03526 54977 13899 91056 16563 12863 74249 32982 46864 78723 31382 22447 20875 54466 35817 39145 05767 19835 04578 63257 67243 58967 41504 14517 52355 11956 82562 16270 97316 51415 66161 84538 60309 84040 28466 42081 79306 77171 23706 57460 54874 10356 69490 09099 57990 51910 17117 74347 62856 60483 46892 43543 04706 11618 88435 59076 62624 49314 65994 79448 67353 62592 68762 68337 34109 87054 46183 08659 20394 31446 28267 41631 08807 29221 70904 30834 14856 15102 26176 51273

Specs: This table of 1000 random numbers was produced according to the following specifications: Numbers were randomly selected from within the range of 0 to 99999. Duplicate numbers were allowed. This table was generated on 7/28/2021.

Frequently-Asked Questions


Instructions: To find the answer to a frequently-asked question, simply click on the question.

What are random numbers?

Random numbers are sets of digits (i.e., 0, 1, 2, 3, 4, 5, 6, 7, 8, 9) arranged in random order. Because they are randomly ordered, no individual digit can be predicted from knowledge of any other digit or group of digits.

What is a random number generator?

A random number generator is a process that produces random numbers. Any random process (e.g., a flip of a coin or the toss of a die) can be used to generate random numbers. Stat Trek's Random Number Generator uses a statistical algorithm to produce random numbers.

What is a random number table?

A random number table is a listing of random numbers. Stat Trek's Random Number Generator produces a listing of random numbers, based on the following User specifications:

  • The quantity of random numbers desired.
  • The maximum and minimum values of random numbers in the list.
  • Whether or not duplicate random numbers are permitted.

How "random" is Stat Trek's Random Number Generator?

Although no computer algorithm can produce numbers that are truly random, Stat Trek's Random Number Generator produces numbers that are nearly random. Stat Trek's Random Number Generator can be used for most statistical applications (like randomly assigning subjects to treatments in a statistical experiment). However, it should not be used to generate numbers for cryptography.

What are the minimum and maximum values in the Random Number Generator?

The minimum and maximum values set limits on the range of values that might appear in a random number table. The minimum value identifies the smallest number in the range; and the maximum value identifies the largest number. For example, if we set the minimum value equal to 12 and the maximum value equal to 30, the Random Number Generator will produce a table consisting of random arrangements of numbers in the range of 12 to 30.

What does it mean to allow duplicate entries in a random number table?

Stat Trek's Random Number Generator allows Users to permit or prevent the same number from appearing more than once in the random number table. To permit duplicate entries, set the drop-down box labeled "Allow duplicate entries" equal to True. To prevent duplicate entries, change the setting to False.

Essentially, allowing duplicate entries amounts to sampling with replacement; preventing duplicate entries amounts to sampling without replacement.

What is a seed?

The seed is a number that controls whether the Random Number Generator produces a new set of random numbers or repeats a particular sequence of random numbers. If the text box labeled "Seed" is blank, the Random Number Generator will produce a different set of random numbers each time a random number table is created. On the other hand, if a number is entered in the "Seed" text box, the Random Number Generator will produce a set of random numbers based on the value of the Seed. Each time a random number table is created, the Random Number Generator will produce the same set of random numbers, until the Seed value is changed.

Note: The ability of the seed to repeat a random sequence of numbers assumes that other User specifications (i.e., quantity of random numbers, minimum value, maximum value, whether duplicate values are permitted) are constant across replications. The use of a seed is illustrated in Sample Problem 1.

Warning: The seed capability is provided for Users as a short-term convenience. However, it is not a long-term solution. From time to time, Stat Trek may change the underlying random number algorithm to more closely approximate true randomization. A newer algorithm will not reproduce random numbers generated by an older algorithm, even with the same seed. Therefore, the safest way to "save" a random number table is to print it out. The algorithm was last changed on 3/1/2018.

Sample Problems


  1. A university is testing the effectiveness of two different medications. They have 10 volunteers. To conduct the study, researchers randomly assign a number from 1 to 2 to each volunteer. Volunteers who are assigned number 1 get Treatment 1 and volunteers who are assigned number 2 get Treatment 2. To implement this strategy, they input the following settings in the Random Number Generator:

    • They want to assign a number randomly to each of 10 volunteers, so they need 10 entries in the random number table. Therefore, the researchers enter 10 in the text box labeled "How many random numbers?".
    • Since each volunteer will receive one of two treatments, they set the minimum value equal to 1; and the maximum value equal to 2.
    • Since some volunteers will receive the same treatment, the researchers allow duplicate random numbers in the random number table. Therefore, they set the "Allow duplicate entries" dropdown box equal to "True".
    • And finally, they set the Seed value equal to 1. (The number 1 is not special. They could have used any positive integer.)

    Then, they hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 10 entries, where each entry is the number 1 or 2. The researchers assign the first entry to volunteer number 1, the second entry to volunteer number 1, and so on.

    Using this strategy, what treatment did the first volunteer receive? What treatment did the tenth volunteer receive?

    Solution:

    This problem can be solved by recreating the exact Random Number Table used by the researchers. By inputting all of the same entries (especially the same Seed value) that were used originally, we can recreate the Random Number Table used by the researchers. Therefore, we do the following:

    • Enter 10 in the text box labeled "How many random numbers?".
    • Set the minimum value equal to 1 and the maximum value equal to 2.
    • Set the "Allow duplicate entries" dropdown box equal to "True".
    • Set the Seed value equal to 1.

    Then, we hit the Calculate button. This produces the Random Number Table shown below.

    10 Random Numbers
    2 2 2 1 1 2 2 1 1 1

    From the table, we can see that the first entry is "2". Therefore, the first volunteer received Treatment 2. And the second entry is "2". Hence, the second volunteer also received Treatment 2. And so on. The tenth volunteer received the tenth number in the list, which is "1". So the tenth volunteer received Treatment 1.
  1. We would like to survey 500 families from a population of 20,000 families. Each family has been assigned a unique number from 1 to 20,000. How can we randomly select 500 families for the survey?

    Solution:

    We input the following settings in the Random Number Generator:

    • We want to select 500 families. Therefore, we enter 500 in the text box labeled "How many random numbers?".
    • Since each family has been assigned a number from 1 to 20,000, we set the minimum value equal to 1; and the maximum value equal to 20,000.
    • Since we only want to survey each family once, we don't want duplicate random numbers in our random number table. Therefore, we set the "Allow duplicate entries" dropdown box equal to "False".

    Then, we hit the Calculate button. The Random Number Generator produces a Random Number Table consisting of 500 unique random numbers between 1 and 20,000. We will survey the families represented by these numbers - a sample of 500 families randomly selected from the population of 20,000 families.